
The Aggregating Algorithm
and Regression

Steven Busuttil

Computer Learning Research Centre and
Department of Computer Science,

Royal Holloway, University of London,
United Kingdom

2008

A dissertation submitted in fulfilment of the degree of
Doctor of Philosophy.

Declaration

I declare that this dissertation was composed by myself, that the work con-

tained herein is my own except where explicitly stated otherwise in the text,

and that this work has not been submitted for any other degree or professional

qualification except as specified.

Steven Busuttil

Supervisors and Examiners

Supervisors: Dr Yuri Kalnishkan and Prof Alex Gammerman

Internal Examiner: TBA

External Examiner: TBA

Abstract

Our main interest is in the problem of making predictions in the online mode

of learning where at every step in time a signal arrives and a prediction needs

to be made before the corresponding outcome arrives. Loss is suffered if the

prediction and outcome do not match perfectly. In the prediction with ex-

pert advice framework, this protocol is augmented by a pool of experts that

produce their predictions before we have to make ours. The Aggregating Al-

gorithm (AA) is a technique that optimally merges these experts so that the

resulting strategy suffers a cumulative loss that is almost as good as that of

the best expert in the pool.

The AA was applied to the problem of regression, where outcomes are

continuous real numbers, to get the AA for Regression (AAR) and its kernel

version, KAAR. On typical datasets, KAAR’s empirical performance is not as

good as that of Kernel Ridge Regression (KRR) which is a popular regression

method. KAAR performs better than KRR only when the data is corrupted

with lots of noise or contains severe outliers. To alleviate this we introduce

methods that are a hybrid between KRR and KAAR. Empirical experiments

suggest that, in general, these new methods perform as good as or better than

both KRR and KAAR.

In the second part of this dissertation we deal with a more difficult problem

— we allow the dependence of outcomes on signals to change with time. To

handle this we propose two new methods: WeCKAAR and KAARCh. WeCK-

AAR is a simple modification of one of our methods from the first part of

the dissertation to include decaying weights. KAARCh is an application of

the AA to the case where the experts are all the predictors that can change

with time. We show that KAARCh suffers a cumulative loss that is almost

as good as that of any expert that does not change very rapidly. Empirical

results on data with changing dependencies demonstrate that WeCKAAR and

KAARCh perform well in practice and are considerably better than Kernel

Ridge Regression.

To Mariella

Acknowledgements

I am grateful to my supervisor Yuri Kalnishkan for providing help, direction

and insight during my PhD. I also thank my other supervisor Alex Gammer-

man for helpful discussions and comments. I am indebted to Volodya Vovk

who was always happy to provide advice and ideas. I also thank Zhiyuan Luo

for interesting and helpful discussions.

During my PhD I made several friends at the department, in particular

Tony Bellotti, Brian Burford, Mikhail Dashevsky, and Joe Reddington. I thank

them for discussions we had, both related and unrelated to my PhD, the oc-

casional walk or visit to the pub, and for their company during a break. I am

thankful to Dr Michael Vyugin at the RTSSE for suggesting a problem which

inspired part of this work, for providing data, and for sharing his expertise

with us.

I also thank all the members of the Computer Centre Badminton club for

helping me in my attempts to keep fit and in learning the sport. I am also

grateful to the support and administrative teams for their help and for keeping

the department running smoothly.

I thank my parents, brothers, sisters and the Fardell family for their con-

tinuous love and support. Above all, I thank my wife Mariella, for her love,

support and patience.

This research was made possible by the Thomas Holloway studentship I

was awarded from Royal Holloway College, for which I am very grateful. I also

thank the college for funding my trips abroad to present papers at conferences.

Contents

1 Introduction 15
1.1 Research Objectives . 17
1.2 Original Contributions . 17

1.2.1 Summary of Original Contributions 18
1.3 List Of Publications . 18
1.4 Organisation of the Dissertation 19

2 The Aggregating Algorithm 20
2.1 Preliminaries . 20
2.2 Algorithm . 21
2.3 The Square Loss Game . 23

2.3.1 Results for the Restricted Game 24
2.3.2 Generalisation to the Full Game 30

3 Online Regression 32
3.1 Protocol and Loss . 32

3.1.1 Batch Learning . 33
3.2 Linear and Kernel Predictors . 33

3.2.1 Standard Kernels . 35
3.3 Existing Solutions . 38

3.3.1 Least Squares . 38
3.3.2 Ridge Regression . 39
3.3.3 Comparison of Least Squares and Ridge Regression . . . 40

4 Improving the Aggregating Algorithm for Regression 43
4.1 Introduction . 43
4.2 The Aggregating Algorithm for Regression (AAR) 45

4.2.1 The Kernel Aggregating Algorithm for Regression (KAAR) 47
4.3 Improving the Empirical Performance of KAAR 49

4.3.1 Simple Convex Combination (KOKO) 51
4.3.2 Iterative KAAR (IKAAR) 52

6

4.3.3 Controlled KAAR (CKAAR) 56
4.4 Summary of Methods and Comparisons with Ridge Regression . 58

4.4.1 Bayesian Interpretation 60
4.5 Empirical Results . 63

4.5.1 Experimentation Methodology 64
4.5.2 Normalisation . 65
4.5.3 Statistical Significance 67
4.5.4 The Gaze Dataset . 68
4.5.5 The Boston Housing Dataset 71
4.5.6 Discussion . 76

4.6 Conclusion . 76

5 Regression with Changing Dependencies 78
5.1 Introduction . 78
5.2 Methods . 80

5.2.1 WeCKAAR . 80
5.2.2 KAARCh . 82

5.3 Upper Bounds . 87
5.3.1 AARCh Loss Upper Bound 88
5.3.2 KAARCh Loss Upper Bound 89
5.3.3 Analysis . 91

5.4 Empirical Results . 93
5.4.1 Artificial Dataset . 94
5.4.2 Options Implied Volatility Data 95

5.5 Conclusion . 99

6 Conclusion 100
6.1 Achievements . 101

6.1.1 Improving the Aggregating Algorithm for Regression . . 101
6.1.2 Regression with Changing Dependencies 101

6.2 Future Work . 102
6.3 Final Remarks . 105

A Lemmas 110

B Additional Empirical Results 114
B.1 Results . 114

B.1.1 The Mexican Hat Dataset 115
B.1.2 The Abalone Dataset . 117
B.1.3 The Auto-MPG Dataset 117
B.1.4 The Auto-Price Dataset 119
B.1.5 The Relative CPU Performance Dataset 120

7

B.1.6 The Servo Dataset . 120
B.1.7 The Wisconsin Prognostic Breast Cancer Dataset 123

8

List of Figures

2.1 The parametric curve ((−1− γ)2, (1− γ)2) with γ ∈ [−1, 1]. . . 25

2.2 The parametric curve
(
e−η(−1−γ)2 , e−η(1−γ)2

)
for different values

of η with γ ∈ [−1, 1]. 26
2.3 The parametric curve ((γ − 1)2, (γ + 1)2) for γ ∈ [−1, 1]. 28

3.1 Least Squares (LS) and Ridge Regression (RR) approximating
a cubic polynomial from noisy data. 42

4.1 KRR and KAAR approximating a signal-outcome behaviour. . 50
4.2 KRR, KAAR, IKAAR and CKAAR approximating a signal-

outcome behaviour. 63

5.1 The behaviour of θt with time (a), approximating Brownian
motion, and the cumulative loss suffered by KRR, WeCKAAR
and KAARCh on the artificial dataset (b). 94

9

List of Tables

4.1 Formulations in terms of γKRR and z = k(xT ,xT) − k′(K +
aI)−1k. 59

4.2 Validation parameters used for experiments on the Gaze dataset.
. 69

4.3 Online mode results on 1000 random permutations of the Gaze
dataset. 69

4.4 Batch mode results on 1000 random permutations of the Gaze
dataset. 70

4.5 Validation parameters used for experiments on the Boston Hous-
ing dataset. 71

4.6 Online mode results on the 100 permutations of the Boston
Housing dataset from Saunders et al. [1998]. 72

4.7 Batch mode results on the 100 permutations of the Boston Hous-
ing dataset from Saunders et al. [1998]. 73

4.8 Online mode results on 1000 random permutations of the Boston
Housing dataset. 74

4.9 Batch mode results on 1000 random permutations of the Boston
Housing dataset. 75

4.10 Percent improvements of our methods’ results on those of KRR
on the Gaze dataset in batch mode. 76

5.1 Mean square losses suffered on options implied volatility data. . 98

B.1 Validation parameters used for experiments on the Mexican Hat
datasets. 115

B.2 Batch mode results on 1000 random permutations of the Mexi-
can Hat datasets with noise from N(0, 0.2) and N(0, 0.5). 116

B.3 Validation parameters used for experiments on the Abalone
dataset. 117

B.4 Batch mode results on 100 random permutations of the Abalone
dataset. 118

10

B.5 Validation parameters used for experiments on the Auto-MPG
dataset. 118

B.6 Batch mode results on 100 random permutations of the Auto-
MPG dataset. 119

B.7 Validation parameters used for experiments on the Auto-Price
dataset. 120

B.8 Batch mode results on 100 random permutations of the Auto-
Price dataset. 121

B.9 Validation parameters used for experiments on the Relative
CPU Performance dataset. 121

B.10 Batch mode results on 100 random permutations of the Relative
CPU Performance dataset. 122

B.11 Validation parameters used for experiments on the Servo dataset.
. 122

B.12 Batch mode results on 100 random permutations of the Servo
dataset. 123

B.13 Validation parameters used for experiments on the Wisconsin
Prognostic Breast Cancer dataset. 124

B.14 Batch mode results on 100 random permutations of the Wis-
consin Prognostic Breast Cancer dataset. 124

11

Lists of Theorems, Corollaries
and Lemmas

Theorem 1 . 23
Theorem 2 . 46
Theorem 3 . 48
Theorem 4 . 52
Theorem 5 . 88
Theorem 6 . 89

Corollary 1 . 48
Corollary 2 . 92
Corollary 3 . 93

Lemma 1 . 21
Lemma 2 . 24
Lemma 3 . 30
Lemma 4 . 110
Lemma 5 . 110
Lemma 6 . 110
Lemma 7 . 111
Lemma 8 . 111
Lemma 9 . 112
Lemma 10 . 112

12

Notation

N The space of natural numbers.

R The space of real numbers.

Rn The n-dimensional space of real numbers.

H A Hilbert space H; uppercase script letters are used for

Hilbert spaces.

B A matrix B; bold uppercase letters are used for matrices.

B′ Transpose of matrix B.

v = (v1, . . . , vn)′ The n-dimensional (column) vector v with ele-

ments v1, . . . , vn; bold lowercase letters are used for vec-

tors.

〈x, z〉 The dot product of vectors x and z.

Loss T (S) Loss of S at time T .

LT (S) Objective loss function of S at time T .

13

Acronyms

AA Aggregating Algorithm

AAR Aggregating Algorithm for Regression

AARCh Aggregating Algorithm for Regression with Changing depen-

dencies

ANOVA ANalysis Of VAriance

APA Aggregating Pseudo Algorithm

CKAAR Controlled KAAR

GARCH Generalized Autoregressive Conditional Heteroskedasticity

IKAAR Iterated KAAR

KAAR Kernel Aggregating Algorithm for Regression

KAARCh Kernel Aggregating Algorithm for Regression with Changing

dependencies

KOKO Convex combination of KRR and KAAR

KRR Kernel Ridge Regression

KRRV Scaled version of KRR

LS Least Squares

RBF Radial Basis Function

RKHS Reproducing Kernel Hilbert Space

RR Ridge Regression

RTSSE Russian Trading System Stock Exchange

WeCKAAR Weighted CKAAR

14

Chapter 1

Introduction

• Is it going to rain tomorrow?

• How much is my house worth?

• Given a new protein sequence, what is its type?

• What is the price of a stock market share going to be in an hour’s time?

It would be desirable if we could answer questions like the ones above

quickly, cheaply and accurately. However, this may not be possible if we use

traditional methods. For instance, implementing an exact solution may be too

complex or, as for the case of protein classification, the traditional (laboratory)

techniques can be expensive and time consuming. And yet, for some, we simply

do not know of an exact solution.

This is were machine learning comes in. Since, for some reason or other,

we cannot have an exact solution to a problem, we write a computer program

that can learn a good solution instead. The definition of machine learning as

given in Mitchell [1997, Section 1.1] is

Definition 1 (Machine Learning) A computer program is said to learn

from experience E with respect to some class of tasks T and performance

measure P , if its performance at tasks in T , as measured by P , improves with

experience E. 2

15

When the class of predictions is discrete (for example, yes/no answers), the

problem is known as that of classification. On the other hand, if the answers

are continuous, for example, when we have to predict the price of a share,

the problem is known as regression. Learning can be made in batch mode or

online mode. In the batch mode of learning we have a fixed training set which

our algorithm can learn from and testing examples to make predictions on. In

online mode, examples arrive one by one and at each step we have to make a

prediction for each one. In this dissertation we are mostly interested in making

predictions for regression in the online mode of learning.

In the online protocol, on each trial (or step) t = 1, 2, . . . the learner ob-

serves a signal xt and attempts to predict the outcome yt, which is shown to

the learner later. At each step the learner suffers loss. There are different

types of losses; however, we are mostly interested in the square loss which is

the squared discrepancy between a prediction and the outcome. The overall

performance of the learner is measured by means of the sum of all these losses,

known as the cumulative loss. A popular solution to the regression problem

is Ridge Regression (RR), introduced to statistics in Hoerl [1962]. This aims

to find a solution that is simple and that minimises the square loss suffered

on a training set. A nonlinear version of RR, known as Kernel Ridge Regres-

sion (KRR), was subsequently derived through the use of kernels (see Saunders

et al. [1998]).

The Aggregating Algorithm (AA), introduced in Vovk [1990, 1998], allows

us to merge experts from large pools to obtain optimal strategies. Such an

optimal strategy performs nearly as good as the best expert from the class in

terms of the cumulative loss it suffers. In Vovk [2001] the AA is applied to

merge all constant linear predictors, i.e., experts θ predicting θ′xt (it is assumed

that xt and θ are drawn from Rn). The resulting Aggregating Algorithm

for Regression (AAR) (also known as the Vovk-Azoury-Warmuth forecaster,

see Cesa-Bianchi and Lugosi [2006, Section 11.8]) performs almost as well

as the best predictor θ. In Gammerman et al. [2004] the kernel version of

AAR, known as the Kernel AAR (KAAR), is introduced and a bound on its

performance is derived (see also Vovk [2006, Section 8]). From a computational

point of view the algorithm is similar to Ridge Regression.

16

1.1 Research Objectives

The objectives of this dissertation are to analyse existing applications of the

Aggregating Algorithm (AA) to the problem of regression, to improve them and

to create new methods for regression based on the AA.

1.2 Original Contributions

In the first part of this dissertation we analyse the empirical performance

of KAAR. We notice that although KAAR has better theoretical properties

than KRR, the latter tends to perform much better in most cases. KAAR is

better than KRR only when the data contains severe outliers or is corrupted

with lots of noise. We therefore suggest several improvements to KAAR. This

results in mainly two new hybrid algorithms that have an extra parameter

with which they can be made to behave like KRR or KAAR. We then proceed

to give a new Bayesian interpretation of KAAR and our methods. Empirical

experiments suggest that, in general, these new methods suffer a loss that is

less or equal to that of KRR and KAAR.

In the second part of this dissertation we deal with a more difficult re-

gression problem. Usually, it is assumed that the dependency of yt on xt is

fixed. We are interested in the case where this dependency can change with

time. An example of where this might be applicable is in the prediction of

financial option implied volatility which is known to exhibit a dependence on

time. Standard regression techniques like KRR do not handle this problem

well. We therefore introduce two new methods: WeCKAAR and KAARCh.

WeCKAAR is a simple method that adds decaying weights to one of our

hybrid regression techniques. KAARCh is a new method based on the Ag-

gregating Algorithm (AA). To get KAARCh, the AA is used to merge all

predictors that can change with time. We show that KAARCh performs al-

most as well as any predictor if the latter is not changing very rapidly. It

turns out that both WeCKAAR and KAARCh are, once again, computation-

ally similar to KRR. Empirical experiments on artificial and options implied

volatility data suggest that these methods perform well in practice.

17

1.2.1 Summary of Original Contributions

1. Empirical analysis of KAAR.

2. Derivation of new methods that improve KAAR’s empirical performance

and are competitive with Kernel Ridge Regression.

3. Bayesian interpretation of KAAR and our new methods where we show

that these methods push KRR’s prediction towards the mean with an

amount proportional to the variance of the prediction itself.

4. Empirical experiments on the methods above.

5. Derivation of WeCKAAR, which is a simple modification of one of the

techniques mentioned in item 2.

6. Derivation of KAARCh by applying the AA to a class of predictors that

can change with time.

7. Theoretical upper bound that shows that KAARCh’s loss is less or equal

to that of any predictor that does not change very rapidly, plus a small

term.

8. Empirical experiments on WeCKAAR and KAARCh.

1.3 List Of Publications

For items 1 to 4 in Section 1.2.1, corresponding to material in Chapter 4:

• S. Busuttil, Y. Kalnishkan, A. Gammerman, and V. Vovk. The kernel

aggregating algorithm for regression. Machine Learning, submitted.

• S. Busuttil, Y. Kalnishkan, and A. Gammerman. Improving the aggre-

gating algorithm for regression. In Proceedings of the 25th IASTED In-

ternational Conference on Artificial Intelligence and Applications (AIA

2007), pages 347–352. ACTA Press, 2007.

18

• S. Busuttil, Y. Kalnishkan, and A. Gammerman. Two new kernel least

squares based methods for regression. Technical Report CLRC-TR-06-

01, Royal Holloway, University of London, UK, 2006. URL http://www.

clrc.rhul.ac.uk/publications/files/tr0601.pdf.

For items 5 to 8 in Section 1.2.1, corresponding to material in Chapter 5:

• S. Busuttil and Y. Kalnishkan. Online regression competitive with chang-

ing predictors. In Proceedings of the 18th International Conference on

Algorithmic Learning Theory (ALT 2007), Lecture Notes in Artificial

Intelligence, pages 181–195. Springer, Germany, 2007.

• S. Busuttil and Y. Kalnishkan. Weighted kernel regression for predicting

changing dependencies. In Proceedings of the 18th European Conference

on Machine Learning (ECML 2007), Lecture Notes in Artificial Intelli-

gence, pages 535–542. Springer, Germany, 2007.

1.4 Organisation of the Dissertation

The Aggregating Algorithm (AA), which is at the heart of our work, is de-

scribed in detail in Chapter 2, while in Chapter 3 we present the problem we

are mainly interested in: that of online regression. The first part of our work,

where we introduce KAAR and our improvements, is in Chapter 4, and we

deal with the problem of regression with changing dependencies in Chapter 5.

Finally, in Chapter 6 we conclude this dissertation with some closing remarks

and future work. Appendix A contains lemmas used throughout this disserta-

tion, while Appendix B contains more empirical results to support Chapter 4.

19

http://www.clrc.rhul. ac.uk/publications/files/tr0601.pdf
http://www.clrc.rhul. ac.uk/publications/files/tr0601.pdf

Chapter 2

The Aggregating Algorithm

In this chapter we give an overview of the Aggregating Algorithm (AA) fol-

lowing Vovk [2001, Sections 1 and 2]. Note, however, that the presentation of

most of the proofs is ours. Informally, given a pool of experts, the AA makes

predictions such that it performs almost as well as the best expert in the pool

under any circumstances.

2.1 Preliminaries

Let Ω be an outcome space, Γ be a prediction space and Θ be a (possibly

infinite) pool of experts. We consider the following game between Statistician

(or Learner) S, Nature, and Θ:

for t = 1, 2, . . . do

Every expert θ ∈ Θ makes a prediction γ
(θ)
t ∈ Γ

Statistician S observes all γ
(θ)
t

Statistician S outputs a prediction γt ∈ Γ

Nature outputs ωt ∈ Ω

end for

Given a fixed loss function λ : Ω × Γ 7→ [0,∞], Statistician aims to suffer a

cumulative loss

Loss T (S) =
T∑

t=1

λ(ωt, γt)

20

that is not much larger than the loss

Loss T (θ) =
T∑

t=1

λ(ωt, γ
(θ)
t)

of the best expert θ ∈ Θ.

2.2 Algorithm

The AA takes two parameters, a prior probability distribution P0 in the pool

of experts Θ and a learning rate η > 0. P0 specifies the initial weights given

to the experts. Let β = e−η.

We will first describe the Aggregating Pseudo Algorithm (APA) that does

not output actual predictions but generalised predictions. A generalised pre-

diction g : Ω 7→ R is a mapping giving a value of loss for each possible outcome.

At every step t, the APA updates the experts’ weights so that those that suf-

fered large loss during the previous step have their weights reduced:

Pt(dθ) = βλ(ωt,γ
(θ)
t)Pt−1(dθ) , θ ∈ Θ . (2.1)

At time t, the APA chooses a generalised prediction by

gt(ω) = logβ

∫
Θ

βλ(ω,γ
(θ)
t)P ∗

t−1(dθ) , (2.2)

where P ∗
t−1(dθ) are the normalised weights

P ∗
t−1(dθ) =

Pt−1(dθ)

Pt−1(Θ)
.

Lemma 1 (Vovk [2001, Lemma 1]) For any learning rate η > 0, prior P0,

and T = 1, 2, . . .

Loss T (APA) = logβ

∫
Θ

βLoss T (θ)P0(dθ) . (2.3)

2

21

Proof Equation (2.3) holds for T = 1 because by using (2.2) we get

Loss 1(APA) = g1(ω1)

= logβ

∫
Θ

βλ(ω1,γ
(θ)
1)P0(dθ)

= logβ

∫
Θ

βLoss 1(θ)P0(dθ) .

Let us assume that (2.3) holds at step T − 1. We will now show that it

also holds at step T . Clearly,

Loss T (APA) = gT (ωT) + Loss T−1(APA)

= logβ

∫
Θ

βλ(ωT ,γ
(θ)
T)PT−1(dθ)

PT−1(Θ)
+ logβ

∫
Θ

βLoss T−1(θ)P0(dθ) .

Notice that from (2.1) it follows that

PT−1(dθ) = βλ(ωT−1,γ
(θ)
T−1)+···+λ(ω1,γ

(θ)
1)P0(dθ)

= βLoss T−1(θ)P0(dθ) . (2.4)

Therefore,

Loss T (APA) = logβ

∫
Θ

βλ(ωT ,γ
(θ)
T)+Loss T−1(θ)P0(dθ)

PT−1(Θ)

+ logβ

∫
Θ

βLoss T−1(θ)PT−1(dθ)

βLoss T−1(θ)

= logβ

∫
Θ

βLoss T (θ)P0(dθ)PT−1(Θ)

PT−1(Θ)

= logβ

∫
Θ

βLoss T (θ)P0(dθ) .

Since (2.3) holds for T = 1 and also for T if it holds for T − 1, then it follows

by the inductive principle that it holds for any T ≥ 1. �

To get a prediction from the generalised prediction gt(ω) (note that we

use ω since we do not yet know the real outcome of step t, ωt) the AA uses a

substitution function Σ mapping generalised predictions into Γ. A substitution

22

function may introduce extra loss; however, in many cases perfect substitution

is possible. We say that the loss function λ is η-mixable if there is a substitution

function Σ such that

λ(ωt, Σ(gt(ω))) ≤ gt(ωt) (2.5)

on every step t, all experts’ predictions and all outcomes. The loss function λ

is perfectly mixable if it is η-mixable for some η > 0. In this dissertation we are

only interested in the square loss, which is perfectly mixable (see Section 2.3).

For information on the case where the loss function is not perfectly mixable

see, for example, Vovk [2001, Section 2.1].

Theorem 1 If the loss function in a game is η-mixable, then the following

upper bound on the cumulative loss of the AA holds in this game for any T :

Loss T (AA) ≤ logβ

∫
Θ

βLoss T (θ)P0(dθ) . 2

Proof This follows immediately from (2.3) and (2.5). �

In particular, when the pool of experts is finite and all experts are assigned

equal prior weights 1/m, where m is the number of experts, we get, for any

θ ∈ Θ

Loss T (AA) ≤ logβ

(
1

m

∑
θ∈Θ

βLoss T (θ)

)

≤ logβ

(
1

m
βLoss T (θ)

)
= Loss T (θ) +

ln m

η
.

This bound can be shown to be optimal in a very strong sense for all algorithms

attempting to merge experts’ predictions (see Vovk [1998]).

2.3 The Square Loss Game

In this dissertation we are concerned with the (bounded) square loss game

(see Vovk [2001, Section 2.4]), where Ω = [−Y, Y], Y ∈ R, Γ = R, and

23

λ(ω, γ) = (ω − γ)2. We need to find the values of η for which this game is

η-mixable and a suitable substitution function. In Section 2.3.1 we give these

results for the restricted square loss game where Ω = {−1, 1}. This restriction

is removed in Section 2.3.2.

2.3.1 Results for the Restricted Game

In the restricted square loss game it is required that outcomes ωt ∈ {−1, 1}.

Lemma 2 (Vovk [2001, Lemma 2]) The restricted square loss game is η-

mixable if and only if η ≤ 1
2
. 2

Proof The pseudoprediction (g(−1), g(1)) in the restricted square loss game

can be represented by a point on a plane. Similarly, the set of permitted

predictions can be represented by the losses curve

(
(−1− γ)2, (1− γ)2

)
,

where γ ∈ [−1, 1], plotted in Figure 2.1.

In the AA, the pseudoprediction (g(−1), g(1)) is transformed to the point

(x, y) =
(
e−ηg(−1), e−ηg(1)

)
∈ [0, 1]2

of the (x, y)-plane. Under this transformation, the set of permitted predictions

will be represented by the parametric curve

(u, v) =
(
e−η(−1−γ)2 , e−η(1−γ)2

)
,

where, once again, γ ranges over [−1, 1]. In Figure 2.2 we plot this curve

for 3 different values of η. The game is η-mixable if and only if this curve is

convex, since (x, y) would be below the curve in Figure 2.2, which translates to

the pseudoprediction (g(−1), g(1)) being above the losses curve in Figure 2.1.

In this case it would always be possible to find a point on the curve (which

corresponds to finding a permitted prediction) that suffers a loss that is less

or equal to that of the pseudoprediction. In Figure 2.2 the convex curves are

those for which η = 0.1 and η = 0.5.

24

0 4
0

4 γ = −1

γ = 1

L
o
s
s

w
it
h

ω
=
−

1

Loss with ω = 1

Figure 2.1: The parametric curve ((−1− γ)2, (1− γ)2) with γ ∈ [−1, 1].

To find the values of η for which the curve is convex is equivalent to finding

those values for which the second derivative of the curve is less or equal to zero

for all values of γ ∈ [−1, 1]. We will first calculate the first derivative by the

equation

dv

du
=

dv
dγ

du
dγ

.

The elements on the right hand side are given by

dv

dγ
= 2η(1− γ)e−η(1−γ)2 , and

du

dγ
= −2η(1 + γ)e−η(1+γ)2 .

25

0 1
0

1

η = 1

η = 0.5

η = 0.1

Figure 2.2: The parametric curve
(
e−η(−1−γ)2 , e−η(1−γ)2

)
for different values

of η with γ ∈ [−1, 1].

26

Therefore

dv

du
=

2η(1− γ)e−η(1−γ)2

−2η(1 + γ)e−η(1+γ)2

= −1− γ

1 + γ
e−η(1−γ)2+η(1+γ)2

= −1− γ

1 + γ
e4ηγ .

To find the second derivative we will use

d2v

du2
=

d2v
dγdu

du
dγ

.

We have already found du
dγ

. For d2v
dγdu

we get

d2v

dγdu
= −

(
4η

1− γ

1 + γ
e4ηγ − 2

(1 + γ)2
e4ηγ

)
= − e4ηγ

(1 + γ)2
(4η(1− γ)(1 + γ)− 2) .

Therefore
d2v

du2
=

e4ηγ

(1 + γ)2

(
4η(1− γ2)− 2

2η(1 + γ)e−η(1+γ)2

)
.

The only term that can make this negative is 4η(1−γ2)−2. Therefore d2v
du2 ≤ 0

if and only if

4η(1− γ2)− 2 ≤ 0

=⇒ η ≤ 1

2(1− γ2)
.

Since γ2 ∈ [0, 1], then d2v
du2 ≤ 0 for all γ iff

η ≤ 1

2
.

27

0 4
0

4 γ = −1

γ = 1

L
o
ss

w
it
h

ω
=
−

1

Loss with ω = 1

(g(1), g(−1))
(

(γ1−1)2, (γ1 + 1)2
)

(

(γ2−1)2, (γ2 + 1)2
)

(

(γ−1)2, (γ + 1)2
)

for γ ∈ [−1, 1]

Figure 2.3: The parametric curve ((γ − 1)2, (γ + 1)2) for γ ∈ [−1, 1].

Finding a Substitution Function

Recall that a substitution function Σ maps generalised predictions g to actual

predictions γ. In Figure 2.3 we plot the parametric curve ((γ − 1)2, (γ + 1)2)

for γ ∈ [−1, 1] which shows the losses for all possible values of γ. The

point (g(1), g(−1)) represents a generalised prediction. We want to find a

corresponding point on the curve to be able to get an actual prediction. The

bold part of the curve in Figure 2.3 represents the losses corresponding to all

the predictions that a perfect substitution function is allowed to make given

the generalised prediction.

An optimal substitution function for the restricted game would be one that

gives us the γ corresponding to the point where the line ((0, 0), (g(1), g(−1))

intersects with the losses curve. By optimal we mean that it attains the mini-

max of the ratio g(ω)
λ(ω,γ)

. Let x = g(1) and y = g(−1). In Figure 2.3 this is the

28

point ((γ1 − 1)2, (γ1 + 1)2). Clearly, for this case we have

(γ1 − 1)2

(γ1 + 1)2
=

x

y
.

This means that √
(γ1 − 1)2

(γ1 + 1)2
=

√
x

y

−γ1 − 1

γ1 + 1
=

√
x

√
y

γ1 − 1 = −
√

xγ1√
y
−
√

x
√

y

γ1 +

√
xγ1√
y

= 1−
√

x
√

y

γ1

(√
y +

√
x

√
y

)
=

√
y −

√
x

√
y

γ1 =

√
y −

√
x

√
y +

√
x

.

The negative sign on the left hand side of the second step appears because

(γ1 − 1) ∈ [−2, 0] for all γ1 ∈ [−1, 1]. The substitution function γ1 = Σ1(g) is

therefore

γ1 =

√
g(−1)−

√
g(1)√

g(−1) +
√

g(1)
. (2.6)

Unfortunately, substitution function (2.6) is nonlinear and would prove

difficult to use in practice. Therefore, we now attempt to find a simpler sub-

stitution function that finds the γ corresponding to the point on the losses

curve that intersects with a square drawn from the generalised prediction. In

Figure 2.3 this square is drawn with dashed lines and the corresponding point

on the curve is ((γ2 − 1)2, (γ2 + 1)2). Once again, let x = g(1) and y = g(−1).

29

Since all sides of a square have equal length

(γ2 − 1)2 − x = (γ2 + 1)2 − y

−2γ2 − x = 2γ2 − y

γ2 =
y − x

4
.

Therefore this substitution function is

γ2 =
g(−1)− g(1)

4
. (2.7)

2.3.2 Generalisation to the Full Game

The following lemma is an elaboration of the result in Haussler et al. [1998]

that shows that the restriction ωt ∈ {−1, 1} can be removed. It asserts that

any substitution function for the restricted game is also a substitution function

in the full game, where ωt ∈ [−1, 1].

Lemma 3 (Vovk [2001, Lemma 3]) Fix Y1 and Y2 such that Y1 < Y2. Let ω

and p range over [Y1, Y2] and R respectively, and λ(ω − p) = (ω − p)2 be the

square loss function. Let P be a probability distribution in R, and let g be the

generalised prediction corresponding to P , i.e.,

g(ω) = logβ

∫
β(ω−p)2P (dp) .

For every γ ∈ R, if

λ(Y1, γ) ≤ g(Y1) and λ(Y2, γ) ≤ g(Y2) ,

then

λ(ω, γ) ≤ g(ω) , ∀ω ∈ [Y1, Y2] . 2

The Square Loss Game with ωt ∈ [−Y, Y]

In this section we generalise the results above for the square loss game with

ωt ∈ [−Y, Y] for any Y ∈ R.

30

To find the values of η for which this game is η-mixable, let ũ = e−η̃(−Y−γ)2

where γ ∈ [−Y, Y], corresponding to u in Section 2.3.1. We will reduce this to

its equivalent in the full square loss game with ωt ∈ [−1, 1] by using a scaling

factor of Y 2. We get

u = e−η̃
(−Y−γ)2

Y 2

= e−
η̃

Y 2 (−Y−γ)2 .

Let η = η̃
Y 2 . We know that for this game to be η-mixable η̃ has to be less or

equal to 1
2

. Therefore, the full square loss game with ωt ∈ [−Y, Y] is η-mixable

if

ηY 2 ≤ 1

2

=⇒ η ≤ 1

2Y 2
.

To get a substitution function for this game we simply repeat the procedure

used to obtain (2.7) with ((γ − Y)2, (γ + Y)2) replacing ((γ − 1)2, (γ + 1)2),

and (g(Y), g(−Y)) replacing (g(1), g(−1)). This gives us

γ =
g(−Y)− g(Y)

4Y
. (2.8)

31

Chapter 3

Online Regression

In this chapter we introduce the problem of online regression and some stan-

dard solutions. As usual, all vectors are identified with one-column matrices

and A′ stands for the transpose of matrix A. We will not be specifying the

size of simple matrices like the identity matrix I when this is clear from the

context.

3.1 Protocol and Loss

In online regression at every moment in time t = 1, 2, . . . , the value of a sig-

nal xt ∈ X arrives. Statistician (or Learner) S observes xt and then outputs

a prediction γt ∈ R. Finally, the outcome yt ∈ R arrives. This can be sum-

marised by the following scheme:

for t = 1, 2, . . . do

S observes xt ∈ X

S outputs γt ∈ R
S observes yt ∈ R

end for

The set X is a signal space which is assumed to be known to Statistician in

advance. We will be referring to a signal-outcome pair as an example.

The performance of S is measured by the sum of square losses, which are the

squared discrepancies between the predictions and the outcomes. Therefore,

32

on trial t Statistician S suffers loss (yt − γt)
2. The losses incurred over several

trials sum up to the overall loss, known as the cumulative square loss. Thus,

after T trials the total loss of S is

Loss T (S) =
T∑

t=1

(yt − γt)
2 .

Clearly, a smaller value of Loss T (S) means a better predictive performance.

3.1.1 Batch Learning

Although our main interest is in the online mode of learning, the algorithms

described in this dissertation can be naturally applied in batch learning mode.

In this mode, Statistician S is given a training set comprised of ` signal-

outcome pairs (xi, yi) ∈ X × R and a testing set containing new signals. S is

required to output predictions that approximate the true outcomes of the

signals in the testing set. Once again, the performance of S is measured by

the square loss.

3.2 Linear and Kernel Predictors

If X ⊆ Rn we can consider simple linear predictors of the form θ ∈ Rn that

given a signal x ∈ X make a prediction θ′x. Linear methods are easy to

manipulate mathematically but their use in the real world is limited since

they can only model simple dependencies. One solution to this could be to

map the data to some high dimensional feature space and then find a simple

solution there. This, however, can lead to what is known as the curse of

dimensionality where both the computational and generalisation performance

degrade as the number of features grow [Cristianini and Shawe-Taylor, 2000,

Section 3.1]. Kernels, defined below, can be used to make a linear algorithm

operate in feature space without the inherent complexities.

Definition 2 (Kernels as Dot Products in Feature Space) Given a map-

33

ping φ : X 7→ H, where H is a Hilbert space, kernels are defined as

k(x, z) = 〈φ(x), φ(z)〉 . 2

Definition 3 (Reproducing Kernels of a Reproducing Kernel Hilbert

Space (RKHS)) A Reproducing Kernel Hilbert Space (RKHS) on a set X

is a Hilbert space F of real valued functions on X such that the evaluation

functional f ∈ F 7→ f(x) is continuous for each x ∈ X. By the Riesz Represen-

tation theorem (see Lemma 7), for every x ∈ X there exists a function kx ∈ F
such that

f(x) = 〈kx, f〉 ,

for all f ∈ F . The reproducing kernel of F is the function k : X × X 7→ R
such that

k(x, z) = 〈kx, kz〉 = kx(z) = kz(x) . 2

Definition 4 (Kernels as Symmetric Positive Semi-Definite Functions)

A kernel is any function k : X ×X 7→ R that is symmetric

k(x, z) = k(z,x)

for all z,x ∈ X, and positive semi-definite

∑̀
i,j=1

cicjk(xi,xj) ≥ 0

for all ` ≥ 1, all ci, cj ∈ R, and all xi,xj ∈ X. 2

These three definitions are equivalent since a function k(x, z) : X×X 7→ R
can be represented in the form 〈φ(x), φ(z)〉 iff k is the reproducing kernel of

an RKHS iff k is symmetric and positive semi-definite.

Typically, to transform a linear method into a nonlinear one, the linear

algorithm is first formulated in such a way that all signals appear only in dot

products. This formulation is known as the dual form. These dot products are

34

then replaced by kernels. This procedure is known as the kernel trick and was

first used in this context in Aizerman et al. [1964]. It follows from the defini-

tions above that for all ` and all x1, . . . ,x` ∈ X the kernel (or Gram) matrix

K = (k(xi,xj))i,j, i, j = 1, . . . , ` is positive semi-definite, i.e., has nonnegative

eigenvalues. In addition, for every kernel there exists a unique RKHS F such

that k is the reproducing kernel of F . Intuitively, if D ∈ F , then D(x) is

a decision rule in F that produces a prediction for the object x. We will be

measuring the complexity of D by its norm ‖D‖ in F . For more information

on kernels and RKHS see, for example, Aronszajn [1950], Schölkopf and Smola

[2002, Chapter 2], and Vovk [2006, Sections 2 and 4].

3.2.1 Standard Kernels

There are several standard ‘general purpose’ kernels; choosing one (or creating

a new one) depends on the task at hand. In the descriptions below, x, z ∈ X

are objects of dimension n. For more detailed information see, for example,

Schölkopf and Smola [2002], Herbrich [2002] and Shawe-Taylor and Cristianini

[2005].

The Linear Kernel

The linear kernel is the simplest of kernels since it is the standard dot product

kl(x, z) = 〈x, z〉 .

Clearly, the mapping used is the identity function, therefore the input and

feature spaces are the same.

The Polynomial Kernel

The polynomial kernel is a simple but powerful kernel given by

kp(x, z) = (1 + 〈x, z〉)d .

35

This kernel maps the elements of the vectors into the space spanned by all

their monomials (products of features) up to and including the dth degree.

The Radial Basis Function Kernel

The radial basis function (RBF) kernel is calculated by

kr(x, z) = exp

(
−‖x− z‖2

2σ2

)
.

RBF kernels map the input space onto the surface of an infinite dimensional

unit hypersphere, because by construction ‖φ(x)‖ =
√

kr(x,x) = 1 for all

x ∈ X. The parameter σ (the radius), which can be any positive real number,

controls the amount of smoothing of the decision surface in input space. Big

values of σ lead to a very flat and smooth decision surface and conversely,

small values lead to a very convoluted decision surface that fits tightly around

the given data.

The Spline Kernel

The spline kernel is what is known as a multiplicative kernel, where the multi-

dimensional case is achieved by taking the product of the one-dimensional case.

The one-dimensional linear spline kernel with an infinite number of nodes is

ks1(x, z) =
min(x, z)3

3
+

min(x, z)2|x− z|
2

+ xz + 1 . (3.1)

Clearly, the n-dimensional case is calculated by

ks(x, z) =
n∏

i=1

ks1(xi, zi) ,

where xi denotes the ith element of object x. The spline kernel requires that

all the elements of its arguments are positive.

36

The ANOVA Kernel

ANOVA (ANalysis Of VAriance) is a statistical technique used to analyse

the interactions between attributes. Given a one-dimensional multiplicative

kernel k1, the ANOVA kernel of order d is defined as

k(d)
a (x, z) =

∑
1≤i1<...<id≤n

k1(xi1 , zi1)× · · · × k1(xid , zid) ,

where xij and zij are the ijth elements of vectors x and z respectively.

We now give a recurrent procedure to calculate this kernel as described in

Burges and Vapnik [1995] and Stitson et al. [1999]. Let k
(0)
a (x, z) = 1, and

once again, let k1 be a one-dimensional multiplicative kernel. The ANOVA

kernel of order d can be computed by

k(d)
a (x, z) =

1

d

d∑
i=1

(−1)i+1k(d−i)
a (x, z)

n∑
j=1

(k1(xj, zj))
i ,

where xj and zj are the jth elements of vectors x and z respectively. This

recurrent procedure can be implemented very efficiently by using a dynamic

programming technique where all lower orders are calculated at the same time.

There are two ways of using ANOVA decomposition to produce kernels of

order d. The first method includes order d and all lower orders,

ka(x, z) =
d∑

i=1

k(d)
a (x, z) .

The second method only includes order d,

ka(x, z) = k(d)
a (x, z) .

Following Stitson et al. [1999], in our experiments we use ANOVA decompo-

sitions of the latter type, that is, considering the term of order d only. When

this kernel is applied to (3.1), i.e., k1 = ks1, we get the ANOVA spline kernel.

37

3.3 Existing Solutions

Let us model the data by the linear equation

yt = 〈w,xt〉+ εt , (3.2)

where w,xt ∈ Rn and εt ∈ R is some noise. The most popular solutions to

this problem are Least Squares (LS) and Ridge Regression (RR). LS finds the

solution that best fits the data, while RR balances the goodness of fit of the

solution with its complexity.

3.3.1 Least Squares

The method of Least Squares (LS) was derived independently by Legendre and

Gauss in 1805 and 1809 respectively. At time T it aims to find a solution wL

to (3.2) that minimises the overall sum of square losses over the previously

seen examples1

LT (LS) =
T−1∑
t=1

(yt − 〈wL,xt〉)2 . (3.3)

If we let w = wL and formulate (3.3) in matrix notation we get

LT (LS) = (y −Xw)2

= y′y − 2w′X′y + w′X′Xw ,

where X = (x1, . . . ,xT−1)
′ and y = (y1, . . . , yT−1)

′. To find the w that min-

imises this we take its first derivative

∂LT (LS)

∂w
= −2X′y + 2X′Xw . (3.4)

1It may seems strange that in (3.3) (and other places) the size of the training set is T −1.
This is indeed unusual but is given in this form to be consistent with the other methods’
objective functions.

38

The minimum is attained when (3.4) equals 0, therefore,

0 = −2X′y + 2X′Xw

2X′Xw = 2X′y

=⇒ wL = (X′X)−1X′y .

3.3.2 Ridge Regression

Least Squares runs into problems when some features in X are highly corre-

lated because the matrix X′X becomes close to singular, resulting in unstable

solutions. Ridge Regression (RR), first introduced to statistics in Hoerl [1962],

differs from Least Squares in that at time T its objective is to minimise

LT (RR) = a‖wR‖2 +
T−1∑
t=1

(yt − 〈wR,xt〉)2 , (3.5)

where a is a fixed nonnegative real number. To find the solution to this we

will take its derivative and set it equal to 0 similar to what we did for Least

Squares. Letting w = wR and using matrix notation, (3.5) becomes

LT (RR) = a(w′w) + (y −Xw)2

= a(w′w) + y′y − 2w′X′y + w′X′Xw .

If we differentiate this with respect to w, divide throughout by 2 and set it

equal to 0 we get

1

2

∂LT (RR)

∂w
= aw −X′y + X′Xw = 0 .

Making w = wR subject of the formula gives us

wR = (aI + X′X)−1X′y , (3.6)

where I is the identity matrix.

39

Dual (Kernel) Form

By using Lemma 4 we can get a dual form of RR’s prediction formula which

makes a prediction for the new signal xT by

γRR = y′(aI + XX′)−1XxT . (3.7)

The kernel version of this, referred to as Kernel Ridge Regression (KRR)

(see Saunders et al. [1998]), obtained by replacing all dot products with kernels

is

γKRR = y′(aI + K)−1k , (3.8)

where k = (k(xi,xT)), for i = 1, . . . , T − 1, and K = (k(xi,xj))i,j, for i, j =

1, . . . , T − 1.

3.3.3 Comparison of Least Squares and Ridge Regres-

sion

Clearly, Ridge Regression (RR) is a generalisation of Least Square (LS), be-

cause LS is RR with a = 0. On the other hand, RR is equivalent to LS with

n fictitious examples added to its training data, where n is the dimensionality

of the data. A signal ai of these fictitious examples is all zero except for the

ith element which is equal to
√

a. If we transpose all these signals and put

them in a matrix under each other (similar to what we do to get X) we get

the n× n matrix

A =
√

aI =


√

a 0 · · · 0

0
√

a
. . .

...

0
. 0

0 · · · 0
√

a

 .

40

Let the outcomes of all these fictitious examples be equal to 0. To see how RR

is LS with n fictitious training examples, consider the following:[
X

A

]′ [
X

A

]
= X′X + A′A

= X′X + aI .

Clearly, each one of these fictitious examples pushes the corresponding ele-

ment of the solution vector wR towards 0 by an amount proportional to a.

Effectively, this decreases the norm of wR, reaching the aim of Ridge Regres-

sion’s objective function (3.5) by favouring a wR with smaller elements. This

regularisation reduces the complexity of the solution, decreasing the risk of

overfitting the training data, and consequently leads to better generalisation.

A related effect is that having a > 0 stabilises the solution since this makes

the matrix (aI + X′X) positive definite and therefore nonsingular.

We now show a toy example where this regularisation benefits Ridge Re-

gression. Consider the cubic polynomial

y = −0.5x3 + x2 + 100x , (3.9)

where x ∈ R. We want to predict (3.9) using LS and RR from 4 training points

that have been corrupted by noise. In Figure 3.1 we show the results obtained.

Clearly, RR with a = 0.1 approximates the curve better than LS which is

equivalent to RR with a = 0. From the figure it is clear that LS overfits the

training data, resulting in a bad generalisation performance. For completeness,

we also included RR’s predictions when a = 1 in the figure to show the effect

of over regularisation. If we take points from the interval [−10, 10] at steps

of 0.1, we get 201 outcomes and predictions per method. Using these values,

the mean square loss of LS is 5.62 × 103, while that of RR with a = 0.1 is

3.27× 103. The mean square loss of the over regularised RR is 3.56× 104.

41

−10 −5 0 5 10
−600

−400

−200

0

200

400

600

800

Training points
Outcomes
LS (RR a = 0)
RR a = 0.1
RR a = 1

Figure 3.1: Least Squares (LS) and Ridge Regression (RR) approximating a
cubic polynomial from noisy data.

42

Chapter 4

Improving the Aggregating

Algorithm for Regression

As its name suggests, the Aggregating Algorithm for Regression (AAR) is an

application of the Aggregating Algorithm (AA) to the problem of regression.

KAAR is the kernel version of AAR. AAR and KAAR have very interesting

theoretical properties; however, in this chapter we show that KAAR’s empirical

performance is, in general, worse than that of the popular Kernel Ridge Re-

gression (KRR). We find that KAAR is better only when the data is corrupted

by a lot of noise or contains severe outliers. In an effort to create methods that

perform well whether the data is corrupted or not, we introduce mainly two

new hybrid methods. Empirical results suggest that our new methods perform

better than KAAR on corrupted datasets and comparably to KRR on regular

data. In this chapter we also give a new Bayesian interpretation of KAAR and

our hybrid methods.

4.1 Introduction

As we saw in Chapter 3, in regression we are interested in learning a relation-

ship between a signal, which can consist of one or more independent variables,

and its outcome. In the simplest of models this relationship is taken to be

linear, but nonlinear relationships are common in nature. Once this relation-

ship is established it is possible to predict the outcomes of previously unseen

43

signals.

Ridge Regression (RR) (see Section 3.3.2) attempts to balance the solu-

tion’s goodness of fit on the data with the size of its complexity. Any method

that prevents overfitting of the data is known as regularisation. RR works very

well on real world data and is still very popular today. The Aggregating Algo-

rithm for Regression (AAR) [Vovk, 2001] (see also the Vovk-Azoury-Warmuth

algorithm in Cesa-Bianchi and Lugosi [2006, Section 11.8]) is a relatively new

method and is shown to be only a little worse than any linear predictor in the

online mode of learning. It happens that AAR is similar to RR but with some

extra regularisation added.

Similarly to Ridge Regression, AAR was formulated in dual variables to get

the Kernel Aggregating Algorithm for Regression (KAAR). A general worst

case upper bound on its loss (in the online context) that does not hold for KRR

was derived [Gammerman et al., 2004, Vovk, 2001]. KRR is optimal only under

some probabilistic assumptions (see Section 4.4.1 and Vovk et al. [2005]), while

KAAR’s bound does not make any assumptions on the underlying probability

distribution of the data. This makes KAAR theoretically applicable to a much

wider group of datasets. In particular, this bound does not require the data to

be independently identically distributed (i.i.d.). In many practical applications

i.i.d. is unrealistic to assume. AAR and its kernel version are described in

Section 4.2.

In empirical experiments KAAR performs better than KRR when the data

is corrupted by lots of noise or contains severe outliers. However, this is not

true for regular datasets with KAAR suffering more loss. This happens because

of KAAR’s extra regularisation compared to KRR. Therefore, in Section 4.3

we introduce new hybrid methods, primarily Iterative KAAR (IKAAR) and

Controlled KAAR (CKAAR). These methods modify KAAR in such a way as

to be able to control the amount of extra regularisation, the choice of which

should depend on the data at hand. A comparison of all the methods in-

troduced and a Bayesian interpretation is given in Section 4.4. Surprisingly,

KAAR and our methods can be seen as pushing KRR’s prediction towards

the mean of the outcomes by an amount proportional to the variance of the

prediction itself.

44

Finally, in Section 4.5 we report the empirical performance of all these

methods on the Gaze dataset [Quiñonero-Candela et al., 2006] and the Boston

Housing dataset [Asuncion and Newman, 2007]. The Gaze dataset is of partic-

ular interest to us since it is known to contain severe outliers. On this dataset

our methods perform significantly better than Kernel Ridge Regression. On

more regular datasets, like the Boston Housing dataset, KAAR suffers more

loss than KRR while our hybrid methods perform comparably to KRR.

4.2 The Aggregating Algorithm for Regres-

sion (AAR)

As we saw in Chapter 2, the Aggregating Algorithm (AA) [Vovk, 1990] is a

technique that makes predictions using expert advice. This means that AA

observes the next signal in a sequence and also the predictions of a (possibly

infinite) pool of experts. It then merges the experts’ predictions and outputs its

own prediction which is in a sense optimal. AA was applied to the problem of

linear regression resulting in the Aggregating Algorithm for Regression (AAR)

which merges all the linear predictors that map signals to outcomes [Vovk,

2001].

The AAR solution to the regression problem is

wA = (aI + X̃
′
X̃)−1X̃

′
ỹ , (4.1)

where a > 0, X̃ = (x1,x2, . . . ,xT)′ and ỹ = (y1, y2, . . . , yT−1, 0)′. We will now

show that at time T AAR finds a solution wA that minimises

LT (AAR) = a‖wA‖2 + 〈wA,xT 〉2 +
T−1∑
t=1

(yt − 〈wA,xt〉)2 . (4.2)

If for simplicity of notation we let w = wA and formulate (4.2) in matrix

45

notation we get

LT (AAR) = a(w′w) + (w′xT)2 + (y −Xw)2

= a(w′w) + ỹ′ỹ − 2w′X̃
′
ỹ + w′X̃

′
X̃w .

If we differentiate this with respect to w, divide throughout by 2 and set it

equal to 0 we get

1

2

∂LT (AAR)

∂w
= aw − X̃

′
ỹ + X̃

′
X̃w = 0 .

Making w = wA subject of the formula gives us (4.1).

AAR assumes that outcomes are bounded, that is, that they come from

the interval [−Y, Y], Y ∈ R; however, note that the algorithm does not need

to know the value of Y . The main property of AAR is that the total loss it

suffers is only a little worse than that of any linear predictor. By the latter we

mean a strategy that predicts θ′xt on every trial t, where θ ∈ Rn is some fixed

vector. The set of all linear predictors may be identified with Rn.

Theorem 2 (Vovk [2001, Theorem 1]) For every positive integer n, any

a > 0, and every point in time T ,

Loss T (AAR) ≤ inf
θ

(Loss T (θ) + a‖θ‖2) + Y 2 ln det

(
I +

1

a

T∑
t=1

xtx
′
t

)
. (4.3)

2

It is interesting to note that AAR’s bound does not make any assumptions

on the probability distribution of the data. From (4.1) it is clear that in

computational terms AAR is similar to Ridge Regression but with the signal-

outcome pair (xT , 0) added to its training set, where xT is the new signal for

which a prediction is to be made. This makes predictions shrink towards 0

with the goal of making them even more resistant to overfitting (it is assumed

that the mean of the outcomes is 0).

46

4.2.1 The Kernel Aggregating Algorithm for Regres-

sion (KAAR)

AAR has interesting theoretical properties; however, its use in the real world

is limited since it can only model simple linear dependencies. In Gammerman

et al. [2004] AAR was formulated in dual variables to be able to introduce

nonlinearity through kernels. It follows directly from (4.1) and Lemma 4 that

AAR’s prediction in dual variables is

γAAR = w′
Ax

=

((
aI + X̃

′
X̃
)−1

X̃
′
ỹ

)′
x

= ỹ′
(
aI + X̃X̃

′)−1

X̃x .

Notice that now all signals appear only in dot products. To get the kernel

version of AAR, which we shall call the Kernel Aggregating Algorithm for Re-

gression (KAAR), we simply replace these dot products with kernels. KAAR’s

prediction for the signal xT is therefore calculated by

γKAAR = ỹ′(aI + K̃)−1k̃ , (4.4)

where

K̃ =



k(x1,x1) k(x1,x2) · · · k(x1,xT−1) k(x1,xT)

k(x2,x1) k(x2,x2) · · · k(x2,xT−1) k(x2,xT)
...

...
. . .

...
...

k(xT−1,x1) k(xT−1,x2) · · · k(xT−1,xT−1) k(xT−1,xT)

k(xT ,x1) k(xT ,x2) · · · k(xT ,xT−1) k(xT ,xT)


,

47

and

k̃ =



k(x1,xT)

k(x2,xT)
...

k(xT−1,xT)

k(xT ,xT)


.

KAAR performs little worse than any decision rule D in the RKHS in-

duced by a kernel function k. The following theorem generalises Theorem 2.

Recall that AAR and therefore KAAR, assume that outcomes come from the

interval [−Y, Y].

Theorem 3 (Gammerman et al. [2004, Theorem 1]) Let k be a kernel

on a space X and D be any decision rule in the RKHS F induced by k. Then

for every a > 0 and any point in time T the following holds:

Loss T (KAAR) ≤ Loss T (D) + a‖D‖2 + Y 2 ln det

(
I +

1

a
K̃

)
. (4.5)

2

Estimating the determinant of a positive definite matrix by the product

of its diagonal elements (see Beckenbach and Bellman [1961, Section 2.10,

Theorem 7]) and using the inequality ln(1 + x) ≤ x we get the following

Corollary.

Corollary 1 (Vovk [2006, Section 8]) Under the conditions of Theorem 3

let u = supx∈X

√
k(x,x). Then for every a > 0, every d > 0, every decision

rule D such that ‖D‖ ≤ d and any point in time T , we get

Loss T (KAAR) ≤ Loss T (D) + ad2 +
Y 2u2T

a
.

If, moreover, T is known in advance, it is possible to minimise this by taking

a = (Y u/d)
√

T to get

Loss T (KAAR) ≤ Loss T (D) + 2Y ud
√

T

= Loss T (D) + o(T) . 2

48

4.3 Improving the Empirical Performance of

KAAR

It is shown in Vovk [2001, Theorem 3] that AAR’s bound does not hold for

Ridge Regression (RR) therefore AAR has a better theoretical worst case

performance bound than RR. On the other hand RR can be shown to be a

Bayesian method (see Section 4.4.1). This means that under certain probabilis-

tic assumptions on the data (namely independence and normally distributed

noise), RR has optimal properties on average. Although we cannot realisti-

cally expect these assumptions to hold for real world datasets, RR is known

to perform very well in practice. In fact, on most datasets KRR suffers less

loss than KAAR. However, there are instances where KAAR performs better,

for example when the data is heavily corrupted with noise or has severe out-

liers, such as in the Gaze dataset [Quiñonero-Candela et al., 2006] as shown in

Section 4.5.

Figure 4.1 shows the predictions of KRR and KAAR on a test set contain-

ing 25 signals from a particular permutation1 of the Boston Housing dataset

[Asuncion and Newman, 2007]. Note that the signals in the test set have been

sorted by their target outcome and that the x-axis represents the number of

a signal and is not the signal itself (which is a vector with 13 features). This

sorting was done exclusively to make the figure clearer. Moreover, note that

KRR’s prediction is negative in two instances. This does not make any sense

as far as house prices are concerned; however, for fairness we do not truncate

such results for any method. In this example the mean square loss of KRR is

approximately 26.64 while that of KAAR is approximately 29.33. This means

that KRR’s performance is better. However, analysis of the individual predic-

tions reveals that 44% of KAAR’s predictions are more accurate. Through this

and other empirical experiments it became evident that many times KAAR’s

predictions are overly rigid while KRR’s predictions sometimes fluctuate too

much. It was also observed that occasionally a better prediction can be some-

where in between those of KRR and KAAR.

1For a different permutation of the dataset the figure will be different but the general
idea of what we are trying to show holds.

49

0 5 10 15 20 25
−5

0

5

10

15

20

25

30

35

Signal Number

O
ut

co
m

es
/P

re
di

ct
io

ns

Outcomes
KRR
KAAR

Figure 4.1: KRR and KAAR approximating a signal-outcome behaviour.

50

Equation (3.8) on page 40 and (4.4) show that KRR and KAAR are rather

similar from a computational perspective. Is it possible therefore to combine

these two methods to give a new method that in general is more accurate than

both? Below we present three new methods that attempt to achieve this. The

first method that we propose (KOKO) is a simple convex combination of KRR’s

and KAAR’s predictions. It is included here for completeness and for compar-

ison reasons. The second method, which we call Iterative KAAR (IKAAR),

modifies the KAAR algorithm so that it outputs a sequence of predictions

for a particular signal. We show that this sequence starts from the KAAR

prediction and converges towards the prediction of KRR giving us a smooth

transition from the former to the latter. The third method that we propose

uses the fact that in Figure 4.1 KRR seems to fluctuate a lot with a standard

deviation of 8.87, while KAAR is overly rigid having a standard deviation of

1.14 (the standard deviation of the real outcomes is 4.78). We therefore modify

KAAR’s objective to give us a new method where we can control the rigidness

of the predictions. The resulting method, Controlled KAAR (CKAAR), has a

parameter that allows it to change its behaviour. For two particular values of

this parameter CKAAR is equivalent to KRR and KAAR.

Unfortunately, it is unclear whether we can have theoretical upper bounds

on the square losses of these new methods. This is because they are really

hybrids between KRR and KAAR which are motivated by very different the-

oretical backgrounds.

4.3.1 Simple Convex Combination (KOKO)

One of the simplest ways of combining KRR and KAAR is to take a con-

vex combination of their predictions. This new ‘method’, which we have

dubbed KOKO, makes its predictions as follows:

γKOKO = (1− θ)γKRR + θγKAAR , (4.6)

where θ is a scalar from the interval [0, 1].

51

4.3.2 Iterative KAAR (IKAAR)

As we saw in Section 4.2, KAAR is equivalent to KRR with the signal-outcome

pair (xT , 0) added to its training set, where xT is the new signal. Having 0 as

the signal’s outcome added to the training set pushes the prediction towards 0

and is what makes KAAR’s predictions so rigid. In order to alleviate this we

propose a new method, the Iterative Kernel Aggregating Algorithm for Re-

gression (IKAAR). In its first iteration IKAAR is equivalent to KAAR in that

it adds the pair (xT , 0) to its training set. This produces the prediction γKAAR.

However, in its second iteration IKAAR replaces the extra pair in its training

set with a new pair (xT , γKAAR). This produces another prediction that in turn

is used to replace γKAAR in the training set to make a new prediction. This pro-

cedure can be repeated an arbitrary number of times resulting in a sequence

of IKAAR predictions for the same signal. We will denote these predictions

by γ
(m)
IKAAR where the index (m) denotes the iteration number. For clarity of

notation let γ(m) = γ
(m)
IKAAR and x = xT . We define IKAAR more formally as

follows:

γ(m) = ỹ(m) ′(aI + K̃)−1k̃ , (4.7)

where γ(0) = 0, m ≥ 1, and ỹ(m) =
(
y′, γ(m−1)

)′
. Note that towards the end of

this section and in Section 4.4 we give an explicit formula that computes γ(m)

directly for any m.

Theorem 4 For any signal, IKAAR’s predictions start from the KAAR pre-

diction and converge towards that of KRR as the number of IKAAR iterations

approaches infinity. 2

Proof It follows from IKAAR’s definition that the first prediction γ(1) is

equivalent to KAAR’s prediction. We will now show that IKAAR’s predictions

for any signal converge towards that of KRR as m approaches infinity. We can

open up (4.7) in the following way:

γ(m) =

[
y

γ(m−1)

]′ [
K + aI k

k′ k(x,x) + a

]−1 [
k

k(x,x)

]
, (4.8)

where y, K, and k are as in Section 3.3, and k is the kernel function. This

52

equation shows explicitly how γ(m−1) is being modified to get γ(m). We shall

show that this transformation of γ(m−1) can be characterised by the linear

equation

γ(m) = sγ(m−1) + c , (4.9)

where s, c ∈ R. If we manage to show that 0 ≤ |s| < 1 then it would follow

from the Banach fixed point theorem (see Lemma 5) that IKAAR’s predictions

converge to a fixed point r, such that r = sr + c. Therefore, as m →∞, then

γ(m−1) → γ(m) and γ(m) → r.

If we do the inversion in (4.8) by partitioning (see Lemma 6), we get

γ(m) =

[
y

γ(m−1)

]′ [
P Q

R S

]−1 [
Q

k(x,x)

]

=

[
y

γ(m−1)

]′ [
P̃ Q̃

R̃ S̃

][
Q

k(x,x)

]
=
(
R̃Q + S̃k(x,x)

)
γ(m−1) +

(
y′P̃Q + y′Q̃k(x,x)

)
, (4.10)

where P = K + aI, Q = R′ = k, and S = k(x,x) + a (in this case all the

necessary inverses exist). Note that (4.10) is in the form (4.9). Therefore, if

we make substitutions for P̃, Q̃, R̃, and S̃ in (4.10) we get

s =
k(x,x)− k′(K + aI)−1k

k(x,x)− k′(K + aI)−1k + a
, and (4.11)

c = y′(K + aI)−1k(1− s) . (4.12)

We will now proceed to show that s is always in the interval [0, 1). Since

by definition a > 0, we only need to show that k(x,x) ≥ k′(K + aI)−1k to

reach our goal. We will first show this for the linear kernel (the dot product)

and subsequently we will generalise the result for the nonlinear kernel case.

Therefore, for the linear kernel we have to show that for every x the following

holds (the second line follows from Lemma 4):

x′x ≥ (Xx)′(XX′ + aI)−1Xx (4.13)

= x′X′X(X′X + aI)−1x . (4.14)

53

In order to do this we will first reduce (4.14) to a simpler form. Since X′X is

symmetric it can be diagonalised so that X′X = VΛV′, where the columns

of the unitary matrix V are the eigenvectors of X′X and Λ is the diagonal

matrix made up of the corresponding eigenvalues λi. Recall that since V is a

unitary matrix, V−1 = V′, so V′V = VV′ = I.

Performing the substitution x = Vz (where z ∈ Rn) in (4.14) is the same as

considering (4.14) in the orthogonal basis formed by the eigenvectors of X′X.

Therefore, showing that (4.13) holds is equivalent to proving that

(Vz)′Vz ≥ (Vz)′X′X(X′X + aI)−1Vz .

This reduces to showing that z′z ≥ z′Λ(Λ + aI)−1z. Since X′X is positive

semi-definite all its eigenvalues are nonnegative. Therefore all the elements

in the diagonal matrix Λ(Λ + aI)−1 are 0 ≤ λi

λi+a
< 1. It follows that z′z >

z′Λ(Λ + aI)−1z, which means that

x′x > x′X′X(X′X + aI)−1x . (4.15)

We have just proved the linear case. The general kernel case can be obtained

by using finite dimensional approximations. Recall that inherent in every

kernel is a function φ that maps objects to the RKHS F , which is isomorphic

to l2 = {α = (α1, α2, . . .)|
∑∞

i=1 α2
i converges}. Let us consider the sequence

on subspaces R1 ⊆ R2 ⊆ . . . ⊆ F . The set Rs = {(α1, α2, . . . , αs, 0, 0, . . .)}
may be identified with Rs. Let ps : F 7→ Rs be the projection operator

ps(α) = (α1, α2, . . . , αs, 0, 0, . . .), φs : X 7→ Rs be φs = ps(φ), and ks be given

by ks(v1,v2) = 〈φs(v1), φs(v2)〉, where v1,v2 ∈ X.

Inequality (4.15) holds for ks since Rs has a finite dimension. If (4.15) is

violated, then its counterpart with some large s is violated too. Therefore, it

follows that

k(x,x) ≥ k′(K + aI)−1k . (4.16)

Notice that we do not have a strict inequality anymore since in the limit (4.16)

may turn into an equality.

We have just shown that 0 ≤ s < 1, therefore γ(m) converges to some

54

point r. We will now analyse the last term of (4.9) (that is c) and consequently

show that the point r coincides with the prediction made by KRR for the same

signal. In the definition of c (see (4.12)) the term y′(K+aI)−1k is in fact KRR’s

prediction, therefore c = γKRR(1− s). This means that (4.9) can be rewritten

as

γ(m) = sγ(m−1) + γKRR(1− s) . (4.17)

At fixed point r we have r = sr + γKRR(1− s), implying that r = γKRR, which

ends our proof. �

Remark 1 As it currently stands, to compute the IKAAR prediction for an

iteration m it is necessary to compute all the previous ones. We will now

show how any prediction can be computed directly. Given (4.17) and the fact

that γ(0) = 0, we will prove by induction that for all m ≥ 1

γ(m) = γKRR − smγKRR (4.18)

= (1− sm)γKRR .

Recall that s is given by (4.11). Clearly, (4.18) holds for m = 1 since

γ(1) = sγ(1−1) + (1− s)γKRR

= sγ(0) + γKRR − sγKRR

= γKRR − sγKRR .

Let us assume that (4.18) holds for any m ≥ 1. We will now show that it also

holds for m + 1.

γ(m+1) = sγ(m) + (1− s)γKRR

= s (γKRR − smγKRR) + (1− s)γKRR

= sγKRR − sm+1γKRR + γKRR − sγKRR

= γKRR − sm+1γKRR .

Since (4.18) holds for m = 1 and for m + 1, then by the inductive principle it

follows that it holds for any m ≥ 1.

55

This formulation of IKAAR shows that the rate of convergence of its pre-

dictions to those of KRR is exponential and that there is no iterative procedure

to be solved since it computes the prediction for any iteration directly. 2

4.3.3 Controlled KAAR (CKAAR)

KAAR’s predictions are so rigid because it tries to minimise the value of the

predictions themselves. This is evident in the second term of its objective

function (4.2) on page 45. In our new method, the Controlled Kernel Aggre-

gating Algorithm for Regression (CKAAR), we try to control this behaviour

by adding a coefficient to this second term such that at time T our objective

is to minimise

LT (CKAAR) = a‖wC‖2 + b〈wC,xT 〉2 +
T−1∑
t=1

(yt − 〈wC,xt〉)2 , (4.19)

where a > 0 and b ≥ 0. It is immediately clear that when b = 0 CKAAR should

behave exactly like KRR and conversely like KAAR when b = 1. When b is

somewhere in between, CKAAR will output predictions that are not as rigid

as those of KAAR and do not fluctuate as much as those of KRR, whereas

when b > 1 CKAAR will provide even more regularisation than KAAR does.

Letting w = wC we can express (4.19) in matrix notation to give

LT (CKAAR) = a(w′w) + b(w′xT)2 + (y −Xw)2

= a(w′w) + ỹ′ỹ − 2w′X̂
′
ỹ + w′X̂

′
X̂w ,

where X̂ = (X′,
√

bxT)′ and ỹ = (y′, 0)′. If we differentiate this with respect

to w, divide throughout by 2 and set it equal to 0 we get

1

2

∂LT (CKAAR)

∂w
= aw − X̂

′
ỹ + X̂

′
X̂w = 0 .

This means that the CKAAR solution (wC) to the regression problem for a

56

new example xT is

wC = (aI + X̂
′
X̂)−1X̂

′
ỹ .

The solution we have just derived is for the linear case only. To handle the

nonlinear case we formulate our solution in dual variables using Lemma 4, so

that we can apply the kernel trick:

γCKAAR = w′
Cx

=

((
aI + X̂

′
X̂
)−1

X̂
′
ỹ

)′
x

= ỹ′
(
aI + X̂X̂

′)−1

X̂x .

The kernel version of CKAAR makes a prediction for a new signal xT by

γCKAAR = ỹ′(aI + K̂)−1k̂ , (4.20)

where

K̂ =



k(x1,x1) k(x1,x2) · · · k(x1,xT−1)
√

b k(x1,xT)

k(x2,x1) k(x2,x2) · · · k(x2,xT−1)
√

b k(x2,xT)
...

...
. . .

...
...

k(xT−1,x1) k(xT−1,x2) · · · k(xT−1,xT−1)
√

b k(xT−1,xT)√
b k(xT ,x1)

√
b k(xT ,x2) · · ·

√
b k(xT ,xT−1) b k(xT ,xT)


,

and

k̂ =



k(x1,xT)

k(x2,xT)
...

k(xT−1,xT)√
b k(xT ,xT)


.

Clearly, (aI + K̂) is still positive definite since K̂ is a Gram matrix of vectors

in Hilbert space and one of them happens to be multiplied by
√

b.

57

4.4 Summary of Methods and Comparisons

with Ridge Regression

In this section we will be comparing our methods with KRR. First, we for-

mulate our methods in terms of KRR’s prediction γKRR and z = k(xT ,xT) −
k′(K + aI)−1k. For IKAAR it suffices to notice that in (4.18) s = z/(z + a).

Therefore IKAAR’s prediction can be written as

γIKAAR = γKRR

(
1−

(
z

z + a

)m)
.

For CKAAR we will use Lemma 6 to get a similar formulation. From (4.20)

we know that CKAAR’s prediction for a new signal xT is given by

γCKAAR =

[
y

0

]′ [
K + aI

√
bk√

bk′ bk(xT ,xT) + a

]−1 [
k√

bk(xT ,xT)

]

=

[
y

0

]′ [
P Q

R S

]−1 [
k√

bk(xT ,xT)

]

=

[
y

0

]′ [
P̃ Q̃

R̃ S̃

][
k√

bk(xT ,xT)

]
= y′P̃k +

√
by′Q̃k(xT ,xT)

= y′P−1k + y′P−1Q(S−RP−1Q)−1RP−1k

−
√

by′P−1Q(S−RP−1Q)−1k(xT ,xT)

= y′P−1k
(
1 + (S−RP−1Q)−1(

√
bRP−1k− bk(xT ,xT))

)
= γKRR

(
1− k(xT ,xT)− k′(K + aI)k

k(xT ,xT)− k′(K + aI)k + a/b

)
= γKRR

(
1− z

z + a/b

)
.

Since both IKAAR and CKAAR are generalisations of KAAR we can get a

formulation for KAAR in terms of γKRR and z simply by considering the former

58

Table 4.1: Formulations in terms of γKRR and z = k(xT ,xT)−k′(K+ aI)−1k.

KRR γKRR = y′(aI + K)−1k KAAR γKRR

(
1− z

z+a

)
IKAAR γKRR

(
1−

(
z

z+a

)m)
, m ≥ 1 CKAAR γKRR

(
1− z

z+a/b

)
, b ≥ 0

KOKO γKRR

(
1− θ

(
z

z+a

))
, 0 ≤ θ ≤ 1 KRRV γKRR (1− v) , 0 ≤ v ≤ 1

with m = 1 or the latter with b = 1. This gives us

γKAAR = γKRR

(
1− z

z + a

)
.

Finally, we get KOKO’s prediction in terms of KRR by a simple substitution

of KAAR’s prediction in (4.6) on page 51 which gives us

γKOKO = γKRR

(
1− θ

(
z

z + a

))
.

In Table 4.1 we present a summary of these formulations of the predictions

made by KAAR, IKAAR, CKAAR and KOKO in terms of KRR’s predic-

tion γKRR and z = k(xT ,xT)−k′(K+aI)−1k. These formulations give us com-

putational advantages and they also allow us to understand our new methods

better. It is immediately clear that all these methods ‘scale down’ (in different

ways) KRR’s prediction towards 0 (recall that a > 0, that we have shown that

z ≥ 0, and that we assume that the mean of the outcomes is 0) in an effort

to combat noise and outliers. Note that IKAAR, CKAAR and KOKO have a

parameter which controls (or can completely remove) the extra regularisation

introduced by KAAR. In the table we have also included another method,

dubbed KRRV, to compare our methods against. KRRV simply scales down

KRR’s prediction using a scalar, whereas our methods take in consideration

the signal for which the prediction is being made.

59

4.4.1 Bayesian Interpretation

In order to get a better understanding of the term z = k(xT ,xT) − k′(K +

aI)−1k, we will now give a Bayesian derivation of Ridge Regression which

mainly follows Melluish et al. [2001] and Vovk et al. [2005, Section 10.3] for

the primary case. We will be giving our own derivation for the dual (kernel)

case. This will provide us with the full predictive distribution for the new

signal xT .

We are given training data (x1, y1), . . . , (xT−1, yT−1), where xt ∈ X (here

we take X ⊆ Rn), and yt ∈ R. Let us assume that the signals are fixed

(deterministic) and that the outcomes were generated by the linear model

yt = 〈w,xt〉+ εt ,

(this is identical to (3.2) on page 38) where w ∈ Rn is distributed as N(0, σ2/aI)

and εt ∈ R is distributed as N(0, σ2), and that all of these random elements

are independent.

We will first find P (w|(x1, y1), . . . , (xT−1, yT−1)) that is, the posterior den-

sity of w given the training data. Recall that the normal distribution’s density

is
1

σ
√

2π
exp

(
x− µ

2σ2

)
,

where µ and σ2 are the mean and the variance respectively. The multivariate

form of this together with Bayes’ rule give us

P (w|(x1, y1), . . . , (xT−1, yT−1))

∝ P (w)× P ((x1, y1), . . . , (xT−1, yT−1)|w)

= exp
(
− a

2σ2
‖w‖2

) T−1∏
t=1

exp

(
− 1

2σ2
(yt − 〈w,xt〉)2

)

= exp

(
− 1

2σ2

(
a‖w‖2 +

T−1∑
t=1

(yt − 〈w,xt〉)2

))
. (4.21)

60

This attains its maximum at the w that minimises

a‖w‖2 +
T−1∑
t=1

(yt − 〈w,xt〉)2 .

This is Ridge Regression’s objective function (see (3.5) on page 39), therefore,

the solution to this optimisation problem, which we shall denote by wR, is (3.6)

on page 39.

Rewriting (4.21) in matrix notation gives us

P (w|(x1, y1), . . . , (xT−1, yT−1))

∝ exp

(
− 1

2σ2
(w′(X′X + aI)w − 2y′Xw + y′y)

)
∝ exp

(
− 1

2σ2
(w −wR)′(X′X + aI)(w −wR)

)
. (4.22)

Equation (4.22) can be recognised as the probability distribution function

of the multivariate normal distribution with mean wR and covariance ma-

trix σ2(X′X + aI)−1.

Therefore, the predictive distribution of 〈w,xT 〉, given the training data,

is

N
(
x′T (X′X + aI)−1X′y, σ2x′T (X′X + aI)−1xT

)
. (4.23)

We have just found the mean (which is equal to the prediction) and the

variance of a prediction made by Ridge Regression in linear primary form. We

are, however, interested in the distribution of predictions made by the dual

(kernel) form. We have already given in (3.7) on page 40 the mean of this

formulation. We will derive the dual form of the variance by using Lemma 4.

61

Starting from the variance of the primary form we have

σ2x′T (X′X + aI)−1xT =
σ2

a
x′T (aI(X′X + aI)−1)xT

=
σ2

a
x′T ((X′X + aI−X′X)(X′X + aI)−1)xT

=
σ2

a
x′T ((X′X + aI)(X′X + aI)−1

− X′X(X′X + aI)−1)xT

=
σ2

a
x′T (I−X′(XX′ + aI)−1X)xT

=
σ2

a

(
x′TxT − x′TX′(XX′ + aI)−1XxT

)
.

Therefore the distribution of Ridge Regression’s prediction (4.23) in dual form

is

N

(
y′(XX′ + aI)−1XxT ,

σ2

a

(
x′TxT − x′TX′(XX′ + aI)−1XxT

))
.

As usual, we now replace all dot products in the dual formulation with kernels

to get the kernel version of this distribution (notice that the mean is equivalent

to Kernel Ridge Regression’s (KRR) prediction (3.8) on page 40)

N

(
y′(K + aI)−1k,

σ2

a

(
k(xT ,xT)− k′(K + aI)−1k

))
.

It is immediately clear that z = k(xT ,xT)−k′(K+aI)−1k is proportional to

the variance of Ridge Regression’s prediction. As seen above, KAAR, IKAAR,

CKAAR and KOKO use z to decide on the amount by which to push the

prediction towards the mean (IKAAR, CKAAR and KOKO have an extra

parameter that controls the extent to which this happens). A large variance can

be interpreted as a lack of confidence in the accuracy of the prediction. Pushing

the prediction towards the mean of the outcomes by an amount proportional

to this variance can be a way of preventing extra loss.

62

0 5 10 15 20 25
−5

0

5

10

15

20

25

30

35

Signal Number

O
ut

co
m

es
/P

re
di

ct
io

ns

Outcomes
KRR
KAAR
IKAAR
CKAAR

Figure 4.2: KRR, KAAR, IKAAR and CKAAR approximating a signal-
outcome behaviour.

4.5 Empirical Results

In this section we present the empirical performance of KRR, KAAR and our

new methods on two popular datasets, namely the Gaze dataset [Quiñonero-

Candela et al., 2006] and the Boston Housing dataset [Asuncion and Newman,

2007]. The results of experiments on the artificial Mexican Hat dataset and

on Abalone, Auto-MPG, Auto-Price, Relative CPU Performance, Servo and

Wisconsin Prognostic Breast Cancer datasets (all from Asuncion and Newman

[2007]) can be found in Appendix B. These other empirical results follow a

similar pattern to those reported in this section.

We will first revisit the motivation for introducing changes to KAAR and

show a new version of Figure 4.1 on page 50 with IKAAR and CKAAR predic-

tions included. For these results, which are shown in Figure 4.2, the CKAAR

control parameter b = 0.01 and IKAAR’s iteration m = 88 (these parameters

63

were chosen manually to show the capabilities of these two methods). Using

these parameters, both IKAAR and CKAAR approximate the true outcomes

better than either KRR or KAAR, suffering a square loss of 7.44 and 7.51 re-

spectively. In addition, the standard deviation of IKAAR’s predictions is 5.17,

whereas that of CKAAR is 4.68. This shows that these two methods can be

made not to fluctuate as much as KRR while not being as rigid as KAAR.

This behaviour was indeed our objective.

For all our experiments we used four standard kernels: polynomial, spline,

ANOVA spline, and RBF (see Section 3.2.1). Note that in the results tables

we include p-values denoting the statistical significance of the difference in

the results of the methods. When no statistical significance is achieved the

corresponding p-values are prefixed with an asterisk (∗) (see below for an

outline of statistical significance and p-values).

4.5.1 Experimentation Methodology

Let d1, d2, . . . , dp be p random permutations of a dataset d. Let si be a set

of parameters required by a method m. For example, in the case of Kernel

Ridge Regression, this parameter set would consist of a value for a, the kernel

(for instance the polynomial kernel), and any parameters needed by the kernel

(for example the degree of the polynomial kernel). Given l different parameter

sets (s1, s2, . . . , sl), we apply the following procedure to measure the predictive

performance of a method m on a dataset d. This procedure is commonly used

in the machine learning community (see, for example, Drucker et al. [1997],

Saunders et al. [1998], and Stitson et al. [1999]).

for i = 1 to p do {for every permutation of the dataset}
{— here starts the validation stage —}
Split di into 3 sequential parts: d

(1)
i (training), d

(2)
i (validation), and

d
(3)
i (testing). {the sizes of these are specified beforehand}

for j = 1 to l do {for every parameter set}
Train method m using parameters sj on the training set d

(1)
i .

Make predictions with m using sj on the validation set d
(2)
i in batch

mode.

64

Calculate vij which is the mean loss suffered by m on d
(2)
i using param-

eters sj.

end for

h = arg minj:1,...,l vij {h is the index of the parameter set which performed

best during validation. If this is not unique we take the first one.}
{— here starts the testing stage —}
Train method m using parameters sh on the training set d

(1)
i

Make predictions with m using sh on the testing set d
(3)
i in batch or online

mode.

Calculate ei which is the mean loss suffered on di in the testing stage.

end for

return r = 1
p

∑p
i=1 ei {this is the average of the mean losses suffered on the

testing sets of all permutations of the dataset d}
In the results tables we report this value r, which we shall call the Mean

Square Error (MSE), and the standard deviation (SD) of the mean losses for

all the methods mentioned in this paper.

4.5.2 Normalisation

It is considered good practice to normalise or standardise the data prior to

applying an algorithm to it. Features that are too big can cause computational

problems and a feature that is consistently much larger than another one may

be given undue extra importance. Since the spline kernels require that all the

features in the signals be nonnegative we chose to normalise the features to

the interval [0, 1]. Let X be the matrix containing all the signals (` in total) in

the dataset, one per row. It follows that every column of X corresponds to all

the values of a particular feature in the dataset. Let xij be the element at the

ith row and the jth column of X. Given a signal z of length n, the normalised

version of its jth element zj which we shall denote with zj, is calculated by

zj =
zj −mj

rj

,

65

where mj = min`
i=1(xij) and rj =

(
max`

i=1(xij)−min`
i=1(xij)

)
. Therefore, the

normalised version of z is z = (z1, z2, . . . , zn)′.

Recall that we assume that the outcomes have a mean of 0. This is benefi-

cial to our methods since KAAR’s upper bound on its loss features Y , which is

the largest possible absolute value of the outcomes (see Section 4.2). Making 0

the mean of the outcomes means making Y smaller, giving us a better loss up-

per bound. In addition, all our methods push KRR’s prediction towards 0 as

seen in Section 4.4. We cannot use the outcomes in the testing set, since these

have to be predicted, therefore, the translation of an outcome is done by sub-

tracting from it the mean of the training outcomes. Clearly, every prediction

made must then be shifted up by this same amount.

In our experiments we also normalise our kernels (see Shawe-Taylor and

Cristianini [2005, Section 5.1]). Recall that a kernel function computes the

dot product of the images under a mapping φ of two signals

k(x, z) = 〈φ(x), φ(z)〉 .

We want to use the following normalised transformation instead

φ(x) =
φ(x)

‖φ(x)‖
.

It is easy to see that the norm of φ(x) is given by

‖φ(x)‖ =
√
‖φ(x)‖2

=
√
〈φ(x), φ(x)〉

=
√

k(x,x) .

66

Therefore, the normalised kernel k is given by

k(x, z) =
〈
φ(x), φ(z)

〉
=

〈
φ(x)

‖φ(x)‖
,

φ(z)

‖φ(z)‖

〉
=

〈φ(x), φ(z)〉
‖φ(x)‖‖φ(z)‖

=
k(x, z)√

k(x,x)k(z, z)
.

4.5.3 Statistical Significance

It is not always obvious whether the difference between two sets of results is

really an improvement or not especially if the difference is small or the results

have a large variance. For instance, could this difference be due to chance

alone? There exist several statistical tests that output a p-value, which is the

probability of obtaining a result at least as extreme as the one given due to

chance alone if the null hypothesis is true. Statistical significance tests can

be broadly split up into two classes: parametric and nonparametric. The first

assume that the data follows a particular distribution (typically the normal

distribution) while the latter do not make such assumptions. Since we do

not know what the distribution of the differences between the results of two

methods is2, we use the Wilcoxon Signed Rank Test (WSRT) which is a popular

nonparametric test (see, for example, Hollander and Wolfe [1973]).

The WSRT tests the null hypothesis that the median difference between

two matched samples, r1 and r2, is zero. In our case, r1 and r2 are the losses

suffered by two methods on permutations of the same data. More specifically,

r1 =
(
m

(1)
1 , m

(1)
2 , . . . ,m

(1)
p

)
and r2 =

(
m

(2)
1 , m

(2)
2 , . . . ,m

(2)
p

)
, where m

(j)
i is the

mean square loss suffered by method j on the ith permutation of the dataset.

Take, for instance, the case where m
(1)
i = m

(2)
i for all i except one, say, when

i = h. If the difference m
(1)
h − m

(2)
h is very large then the mean of r1 and r2

can be very different. This can lead us to believe that one of the methods

2Preliminary tests using the Kolmogorov-Smirnov test for normality (see Hollander and
Wolfe [1973]) show that the differences between the results of two methods in our experiments
are, in fact, not normally distributed.

67

is better than the other on this particular dataset. However, in this case the

WSRT will output a large p-value, indicating that the difference can be due to

chance only. On the other hand, if most of the losses in r1 are (slightly) larger

than those in r2, then the p-value produced will be close to 0, indicating that

the difference is in fact statistically significant, and therefore, the method that

suffered the losses in r2 performs better than the other on this dataset. Note

that by convention, the null hypothesis is rejected if the p-value obtained is

less than 0.05 (or 5%).

In general it can be said that if a p-value is not small then this means

that either the null hypothesis is true or that we do not have a sample that

is big enough. In our case the sample size is just the number of experiments

on random permutations of the dataset. On the other hand, if a p-value is

small then it means that we have enough samples and we can refute the null-

hypothesis, that is, we can be confident in our results.

4.5.4 The Gaze Dataset

The outcomes in the Gaze dataset [Quiñonero-Candela et al., 2006] are the

horizontal positions of targets displayed on a computer monitor measured in

pixels. The corresponding 12 features are measurements from head mounted

cameras that focus on markers on the monitor and estimate the positions of

the eyes of the subject looking at the monitor. Since the cameras occasionally

lose their calibration, the dataset contains several severe outliers. Note that

only the training and validation sets were used from the original dataset since

the outcomes of the testing set were not available. We did not remove any of

the signals for our experiments (not even the outliers), therefore, it is to be

expected that the results have high variance.

The dataset used contains 450 examples and 1000 random permutations

where taken (i.e., p = 1000). Each permutation of the dataset was split into

350, 70 and 30 examples for training, validation and testing respectively. All

the combinations per kernel of the parameters shown in Table 4.2 were used

during the validation stage. See Table 4.3 and Table 4.4 for the results in

online mode and batch mode respectively.

68

Table 4.2: Validation parameters used for experiments on the Gaze dataset.

Parameter Name Values
Polynomial degree 4, 5
Spline (no parameters)
ANOVA spline order 2, 4, 6, 8, 10, 12
RBF σ 1, 4
a 2−15, 2−13, . . . , 2−3

IKAAR m 21, 41, . . . , 161
CKAAR b 0, 0.01, 0.05, 0.1
KOKO θ 0, 0.01, 0.05, 0.1, 0.5
KRRV v 0, 0.01, 0.05, 0.1

Table 4.3: Online mode results on 1000 random permutations of the Gaze
dataset.

Method MSE SD Statistical Significance of Difference

Poly ×103 ×103 KRR KAAR IKAAR CKAAR KOKO KRRV
KRR 7.67 31.35 1×10−92 1×10−16 8×10−4 7×10−3 ∗ 3×10−1

KAAR 3.54 0.94 1×10−92 2×10−109 7×10−96 2×10−93 1×10−93

IKAAR 3.03 5.39 1×10−16 2×10−109 5×10−9 2×10−12 4×10−17

CKAAR 5.88 25.59 8×10−4 7×10−96 5×10−9 2×10−2 2×10−3

KOKO 8.00 32.34 7×10−3 2×10−93 2×10−12 2×10−2 1×10−4

KRRV 7.92 32.38 ∗ 3×10−1 1×10−93 4×10−17 2×10−3 1×10−4

Spline ×103 ×103 KRR KAAR IKAAR CKAAR KOKO KRRV
KRR 2.88 5.77 4×10−146 ∗ 8×10−2 ∗ 7×10−1 ∗ 7×10−1 ∗ 8×10−1

KAAR 4.17 1.13 4×10−146 3×10−156 4×10−141 2×10−142 4×10−146

IKAAR 2.35 2.35 ∗ 8×10−2 3×10−156 ∗ 1×10−1 4×10−2 3×10−2

CKAAR 2.73 4.92 ∗ 7×10−1 4×10−141 ∗ 1×10−1 ∗ 7×10−1 ∗ 9×10−1

KOKO 3.04 7.93 ∗ 7×10−1 2×10−142 4×10−2 ∗ 7×10−1 ∗ 6×10−2

KRRV 2.92 6.02 ∗ 8×10−1 4×10−146 3×10−2 ∗ 9×10−1 ∗ 6×10−2

ANOVA ×103 ×103 KRR KAAR IKAAR CKAAR KOKO KRRV
KRR 3.91 17.08 2×10−98 3×10−7 ∗ 2×10−1 ∗ 9×10−1 ∗ 9×10−1

KAAR 3.28 0.91 2×10−98 2×10−109 4×10−99 5×10−96 6×10−97

IKAAR 2.58 3.35 3×10−7 2×10−109 4×10−4 4×10−8 2×10−8

CKAAR 3.16 6.51 ∗ 2×10−1 4×10−99 4×10−4 ∗ 2×10−1 ∗ 2×10−1

KOKO 3.98 16.11 ∗ 9×10−1 5×10−96 4×10−8 ∗ 2×10−1 3×10−2

KRRV 4.00 17.25 ∗ 9×10−1 6×10−97 2×10−8 ∗ 2×10−1 3×10−2

RBF ×103 ×103 KRR KAAR IKAAR CKAAR KOKO KRRV
KRR 4.83 19.86 3×10−76 2×10−13 8×10−8 2×10−2 ∗ 2×10−1

KAAR 2.91 0.77 3×10−76 8×10−93 5×10−81 3×10−73 2×10−75

IKAAR 2.49 3.13 2×10−13 8×10−93 4×10−2 1×10−10 1×10−13

CKAAR 4.49 19.53 8×10−8 5×10−81 4×10−2 2×10−5 7×10−8

KOKO 4.99 20.15 2×10−2 3×10−73 1×10−10 2×10−5 4×10−5

KRRV 4.79 19.69 ∗ 2×10−1 2×10−75 1×10−13 7×10−8 4×10−5

69

Table 4.4: Batch mode results on 1000 random permutations of the Gaze
dataset.

Method MSE SD Statistical Significance of Difference

Poly ×103 ×103 KRR KAAR IKAAR CKAAR KOKO KRRV
KRR 7.69 31.21 6×10−91 7×10−16 4×10−3 3×10−2 ∗ 5×10−1

KAAR 3.60 0.97 6×10−91 8×10−113 4×10−97 5×10−92 1×10−91

IKAAR 3.00 5.19 7×10−16 8×10−113 3×10−9 3×10−13 2×10−16

CKAAR 5.86 25.43 4×10−3 4×10−97 3×10−9 3×10−2 9×10−3

KOKO 8.14 33.77 3×10−2 5×10−92 3×10−13 3×10−2 9×10−4

KRRV 8.10 34.61 ∗ 5×10−1 1×10−91 2×10−16 9×10−3 9×10−4

Spline ×103 ×103 KRR KAAR IKAAR CKAAR KOKO KRRV
KRR 2.96 6.80 2×10−148 ∗ 3×10−1 ∗ 5×10−1 ∗ 8×10−1 ∗ 8×10−1

KAAR 4.26 1.18 2×10−148 2×10−155 6×10−143 6×10−146 6×10−149

IKAAR 2.37 2.35 ∗ 3×10−1 2×10−155 ∗ 2×10−1 ∗ 2×10−1 5×10−2

CKAAR 2.76 5.12 ∗ 5×10−1 6×10−143 ∗ 2×10−1 ∗ 6×10−1 ∗ 9×10−1

KOKO 3.23 12.80 ∗ 8×10−1 6×10−146 ∗ 2×10−1 ∗ 6×10−1 ∗ 7×10−2

KRRV 2.98 6.90 ∗ 8×10−1 6×10−149 5×10−2 ∗ 9×10−1 ∗ 7×10−2

ANOVA ×103 ×103 KRR KAAR IKAAR CKAAR KOKO KRRV
KRR 4.42 32.31 1×10−98 5×10−6 ∗ 2×10−1 ∗ 9×10−1 ∗ 8×10−1

KAAR 3.34 0.95 1×10−98 4×10−109 6×10−99 3×10−96 5×10−97

IKAAR 2.58 3.27 5×10−6 4×10−109 4×10−4 2×10−7 2×10−8

CKAAR 3.18 6.74 ∗ 2×10−1 6×10−99 4×10−4 ∗ 2×10−1 ∗ 1×10−1

KOKO 4.44 29.66 ∗ 9×10−1 3×10−96 2×10−7 ∗ 2×10−1 3×10−2

KRRV 4.51 32.41 ∗ 8×10−1 5×10−97 2×10−8 ∗ 1×10−1 3×10−2

RBF ×103 ×103 KRR KAAR IKAAR CKAAR KOKO KRRV
KRR 4.82 19.66 8×10−78 2×10−13 1×10−7 1×10−2 ∗ 2×10−1

KAAR 2.96 0.80 8×10−78 4×10−95 4×10−84 5×10−75 2×10−77

IKAAR 2.49 3.08 2×10−13 4×10−95 2×10−2 2×10−10 2×10−13

CKAAR 4.42 18.85 1×10−7 4×10−84 2×10−2 2×10−5 7×10−8

KOKO 4.97 19.78 1×10−2 5×10−75 2×10−10 2×10−5 3×10−5

KRRV 4.78 19.47 ∗ 2×10−1 2×10−77 2×10−13 7×10−8 3×10−5

70

Table 4.5: Validation parameters used for experiments on the Boston Housing
dataset.

Parameter Name Values
Polynomial degree 4, 5
Spline (no parameters)
ANOVA spline order 2, 4, 6, 8, 10, 13
RBF σ 0.25, 1, 4
a 2−15, 2−13, . . . , 2−1

IKAAR m 21, 41, . . . , 161
CKAAR b 0, 0.01, 0.05, 0.1
KOKO θ 0, 0.01, 0.05, 0.1, 0.5
KRRV v 0, 0.01, 0.05, 0.1

4.5.5 The Boston Housing Dataset

The Boston Housing dataset [Asuncion and Newman, 2007] concerns the prices

of houses in the suburbs of Boston. A signal corresponds to a particular suburb

and contains 13 attributes, including features like the amount of air pollution

and the average number of rooms. An outcome is simply the median price of

the houses in thousands of dollars.

The dataset contains 506 examples and each permutation of the dataset was

split into 401, 80 and 25 examples for training, validation and testing respec-

tively. All the combinations per kernel of the parameters shown in Table 4.5

were used during the validation stage.

Table 4.6 and Table 4.7 respectively contain the online and batch mode

results achieved on the 100 permutations of the dataset used in Saunders et al.

[1998]. This means that these results are directly comparable to those reported

there. On careful inspection though, it was noted that these permutations are

not quite random and contain some common patterns. We therefore repeated

the Boston Housing experiments on 1000 random permutations of our own.

The online and batch mode results of these new experiments can be found in

Table 4.8 and Table 4.9 respectively.

71

Table 4.6: Online mode results on the 100 permutations of the Boston Housing
dataset from Saunders et al. [1998].

Method MSE SD Statistical Significance of Difference

Poly KRR KAAR IKAAR CKAAR KOKO KRRV
KRR 9.19 5.08 2×10−12 ∗ 9×10−1 ∗ 9×10−2 1×10−2 ∗ 1×10−1

KAAR 14.14 6.77 2×10−12 3×10−13 2×10−14 7×10−14 2×10−13

IKAAR 9.09 5.10 ∗ 9×10−1 3×10−13 ∗ 2×10−1 5×10−2 ∗ 3×10−1

CKAAR 8.99 5.03 ∗ 9×10−2 2×10−14 ∗ 2×10−1 ∗ 5×10−1 ∗ 8×10−1

KOKO 9.00 4.83 1×10−2 7×10−14 5×10−2 ∗ 5×10−1 4×10−2

KRRV 9.07 4.86 ∗ 1×10−1 2×10−13 ∗ 3×10−1 ∗ 8×10−1 4×10−2

Spline KRR KAAR IKAAR CKAAR KOKO KRRV
KRR 7.48 3.69 5×10−22 ∗ 4×10−1 ∗ 3×10−1 ∗ 2×10−1 ∗ 4×10−1

KAAR 14.36 7.11 5×10−22 4×10−22 3×10−23 8×10−23 1×10−22

IKAAR 7.44 3.86 ∗ 4×10−1 4×10−22 ∗ 4×10−1 ∗ 6×10−1 ∗ 6×10−1

CKAAR 7.37 3.69 ∗ 3×10−1 3×10−23 ∗ 4×10−1 ∗ 8×10−1 ∗ 7×10−1

KOKO 7.43 3.64 ∗ 2×10−1 8×10−23 ∗ 6×10−1 ∗ 8×10−1 ∗ 4×10−1

KRRV 7.46 3.65 ∗ 4×10−1 1×10−22 ∗ 6×10−1 ∗ 7×10−1 ∗ 4×10−1

ANOVA KRR KAAR IKAAR CKAAR KOKO KRRV
KRR 7.49 3.28 4×10−16 ∗ 9×10−2 ∗ 3×10−1 ∗ 5×10−1 ∗ 9×10−1

KAAR 11.43 4.88 4×10−16 9×10−17 2×10−17 4×10−17 2×10−16

IKAAR 7.36 3.35 ∗ 9×10−2 9×10−17 ∗ 5×10−1 ∗ 2×10−1 ∗ 1×10−1

CKAAR 7.37 3.31 ∗ 3×10−1 2×10−17 ∗ 5×10−1 ∗ 3×10−1 ∗ 3×10−1

KOKO 7.44 3.23 ∗ 5×10−1 4×10−17 ∗ 2×10−1 ∗ 3×10−1 ∗ 2×10−1

KRRV 7.50 3.21 ∗ 9×10−1 2×10−16 ∗ 1×10−1 ∗ 3×10−1 ∗ 2×10−1

RBF KRR KAAR IKAAR CKAAR KOKO KRRV
KRR 8.23 3.86 4×10−16 ∗ 4×10−1 ∗ 2×10−1 ∗ 2×10−1 ∗ 5×10−1

KAAR 12.41 5.44 4×10−16 4×10−15 6×10−16 6×10−16 7×10−16

IKAAR 8.19 3.95 ∗ 4×10−1 4×10−15 ∗ 6×10−1 ∗ 7×10−1 ∗ 1×10−

CKAAR 8.17 3.95 ∗ 2×10−1 6×10−16 ∗ 6×10−1 ∗ 5×10−1 ∗ 2×10−1

KOKO 8.19 3.85 ∗ 2×10−1 6×10−16 ∗ 7×10−1 ∗ 5×10−1 ∗ 2×10−1

KRRV 8.24 3.85 ∗ 5×10−1 7×10−16 ∗ 1×10− ∗ 2×10−1 ∗ 2×10−1

72

Table 4.7: Batch mode results on the 100 permutations of the Boston Housing
dataset from Saunders et al. [1998].

Method MSE SD Statistical Significance of Difference

Poly KRR KAAR IKAAR CKAAR KOKO KRRV
KRR 9.47 5.48 2×10−12 ∗ 7×10−1 3×10−2 6×10−3 ∗ 1×10−1

KAAR 14.55 7.37 2×10−12 9×10−13 4×10−14 5×10−14 1×10−13

IKAAR 9.39 5.52 ∗ 7×10−1 9×10−13 ∗ 2×10−1 ∗ 7×10−2 ∗ 6×10−1

CKAAR 9.28 5.44 3×10−2 4×10−14 ∗ 2×10−1 ∗ 4×10−1 ∗ 8×10−1

KOKO 9.27 5.23 6×10−3 5×10−14 ∗ 7×10−2 ∗ 4×10−1 4×10−2

KRRV 9.34 5.26 ∗ 1×10−1 1×10−13 ∗ 6×10−1 ∗ 8×10−1 4×10−2

Spline KRR KAAR IKAAR CKAAR KOKO KRRV
KRR 7.72 4.10 3×10−22 ∗ 5×10−1 ∗ 2×10−1 ∗ 2×10−1 ∗ 5×10−1

KAAR 14.81 7.80 3×10−22 1×10−21 2×10−23 2×10−23 6×10−23

IKAAR 7.73 4.30 ∗ 5×10−1 1×10−21 ∗ 8×10−1 ∗ 8×10−1 ∗ 8×10−1

CKAAR 7.60 4.11 ∗ 2×10−1 2×10−23 ∗ 8×10−1 ∗ 7×10−1 ∗ 4×10−1

KOKO 7.66 4.03 ∗ 2×10−1 2×10−23 ∗ 8×10−1 ∗ 7×10−1 ∗ 5×10−1

KRRV 7.69 4.04 ∗ 5×10−1 6×10−23 ∗ 8×10−1 ∗ 4×10−1 ∗ 5×10−1

ANOVA KRR KAAR IKAAR CKAAR KOKO KRRV
KRR 7.73 3.60 4×10−16 ∗ 2×10−1 3×10−2 ∗ 3×10−1 ∗ 8×10−1

KAAR 11.75 5.28 4×10−16 5×10−17 2×10−17 3×10−17 1×10−16

IKAAR 7.60 3.69 ∗ 2×10−1 5×10−17 ∗ 9×10−1 ∗ 6×10−1 ∗ 2×10−1

CKAAR 7.59 3.64 3×10−2 2×10−17 ∗ 9×10−1 ∗ 3×10−1 ∗ 2×10−1

KOKO 7.67 3.53 ∗ 3×10−1 3×10−17 ∗ 6×10−1 ∗ 3×10−1 ∗ 2×10−1

KRRV 7.72 3.53 ∗ 8×10−1 1×10−16 ∗ 2×10−1 ∗ 2×10−1 ∗ 2×10−1

RBF KRR KAAR IKAAR CKAAR KOKO KRRV
KRR 8.55 4.44 3×10−15 ∗ 3×10−1 ∗ 3×10−1 ∗ 1×10−1 ∗ 5×10−1

KAAR 12.72 5.87 3×10−15 1×10−14 3×10−15 5×10−16 2×10−15

IKAAR 8.51 4.50 ∗ 3×10−1 1×10−14 ∗ 8×10−1 ∗ 4×10−1 ∗ 8×10−1

CKAAR 8.49 4.53 ∗ 3×10−1 3×10−15 ∗ 8×10−1 ∗ 6×10−1 ∗ 3×10−1

KOKO 8.48 4.40 ∗ 1×10−1 5×10−16 ∗ 4×10−1 ∗ 6×10−1 ∗ 2×10−1

KRRV 8.54 4.42 ∗ 5×10−1 2×10−15 ∗ 8×10−1 ∗ 3×10−1 ∗ 2×10−1

73

Table 4.8: Online mode results on 1000 random permutations of the Boston
Housing dataset.

Method MSE SD Statistical Significance of Difference

Poly KRR KAAR IKAAR CKAAR KOKO KRRV
KRR 10.76 7.88 2×10−117 ∗ 6×10−1 ∗ 9×10−2 ∗ 2×10−1 ∗ 5×10−1

KAAR 16.90 10.93 2×10−117 6×10−118 2×10−126 2×10−125 1×10−120

IKAAR 11.15 8.02 ∗ 6×10−1 6×10−118 ∗ 9×10−1 2×10−2 ∗ 8×10−2

CKAAR 11.16 8.05 ∗ 9×10−2 2×10−126 ∗ 9×10−1 2×10−2 ∗ 1×10−1

KOKO 10.77 7.78 ∗ 2×10−1 2×10−125 2×10−2 2×10−2 9×10−3

KRRV 10.75 7.82 ∗ 5×10−1 1×10−120 ∗ 8×10−2 ∗ 1×10−1 9×10−3

Spline KRR KAAR IKAAR CKAAR KOKO KRRV
KRR 9.76 6.81 8×10−150 ∗ 6×10−2 ∗ 3×10−1 ∗ 6×10−1 ∗ 9×10−1

KAAR 16.49 10.52 8×10−150 6×10−165 2×10−166 9×10−161 8×10−157

IKAAR 10.14 7.36 ∗ 6×10−2 6×10−165 ∗ 2×10−1 ∗ 8×10−1 ∗ 9×10−1

CKAAR 10.13 7.21 ∗ 3×10−1 2×10−166 ∗ 2×10−1 ∗ 7×10−2 ∗ 4×10−1

KOKO 9.82 6.84 ∗ 6×10−1 9×10−161 ∗ 8×10−1 ∗ 7×10−2 ∗ 6×10−2

KRRV 9.79 6.87 ∗ 9×10−1 8×10−157 ∗ 9×10−1 ∗ 4×10−1 ∗ 6×10−2

ANOVA KRR KAAR IKAAR CKAAR KOKO KRRV
KRR 10.15 7.12 2×10−121 ∗ 5×10−2 ∗ 8×10−1 2×10−2 ∗ 4×10−1

KAAR 15.28 9.84 2×10−121 1×10−128 2×10−135 4×10−130 4×10−126

IKAAR 10.42 7.48 ∗ 5×10−2 1×10−128 ∗ 6×10−1 ∗ 5×10−1 ∗ 4×10−1

CKAAR 10.39 7.26 ∗ 8×10−1 2×10−135 ∗ 6×10−1 ∗ 1×10−1 ∗ 9×10−1

KOKO 10.11 7.05 2×10−2 4×10−130 ∗ 5×10−1 ∗ 1×10−1 5×10−3

KRRV 10.15 7.12 ∗ 4×10−1 4×10−126 ∗ 4×10−1 ∗ 9×10−1 5×10−3

RBF KRR KAAR IKAAR CKAAR KOKO KRRV
KRR 10.56 7.53 2×10−105 5×10−4 ∗ 5×10−1 2×10−2 ∗ 9×10−1

KAAR 15.25 9.58 2×10−105 8×10−128 2×10−127 7×10−120 3×10−113

IKAAR 10.44 7.37 5×10−4 8×10−128 1×10−2 ∗ 9×10−1 ∗ 1×10−1

CKAAR 10.54 7.24 ∗ 5×10−1 2×10−127 1×10−2 ∗ 1×10−1 ∗ 9×10−1

KOKO 10.38 7.24 2×10−2 7×10−120 ∗ 9×10−1 ∗ 1×10−1 1×10−2

KRRV 10.46 7.45 ∗ 9×10−1 3×10−113 ∗ 1×10−1 ∗ 9×10−1 1×10−2

74

Table 4.9: Batch mode results on 1000 random permutations of the Boston
Housing dataset.

Method MSE SD Statistical Significance of Difference

Poly KRR KAAR IKAAR CKAAR KOKO KRRV
KRR 10.91 8.02 4×10−116 ∗ 9×10−1 ∗ 9×10−2 ∗ 1×10−1 ∗ 3×10−1

KAAR 17.14 11.23 4×10−116 7×10−116 6×10−126 5×10−125 5×10−120

IKAAR 11.32 8.29 ∗ 9×10−1 7×10−116 ∗ 9×10−1 6×10−3 ∗ 7×10−2

CKAAR 11.33 8.29 ∗ 9×10−2 6×10−126 ∗ 9×10−1 2×10−2 ∗ 9×10−2

KOKO 10.94 8.02 ∗ 1×10−1 5×10−125 6×10−3 2×10−2 1×10−2

KRRV 10.92 8.06 ∗ 3×10−1 5×10−120 ∗ 7×10−2 ∗ 9×10−2 1×10−2

Spline KRR KAAR IKAAR CKAAR KOKO KRRV
KRR 9.95 7.41 2×10−148 ∗ 6×10−2 ∗ 5×10−1 ∗ 4×10−1 ∗ 8×10−1

KAAR 16.74 10.86 2×10−148 7×10−161 2×10−164 9×10−159 8×10−155

IKAAR 10.28 7.54 ∗ 6×10−2 7×10−161 ∗ 4×10−1 ∗ 8×10−1 ∗ 9×10−1

CKAAR 10.32 7.79 ∗ 5×10−1 2×10−164 ∗ 4×10−1 ∗ 9×10−2 ∗ 4×10−1

KOKO 10.02 7.41 ∗ 4×10−1 9×10−159 ∗ 8×10−1 ∗ 9×10−2 ∗ 6×10−2

KRRV 9.97 7.43 ∗ 8×10−1 8×10−155 ∗ 9×10−1 ∗ 4×10−1 ∗ 6×10−2

ANOVA KRR KAAR IKAAR CKAAR KOKO KRRV
KRR 10.34 7.72 9×10−118 ∗ 6×10−2 ∗ 1×10− 1×10−2 ∗ 3×10−1

KAAR 15.48 10.10 9×10−118 2×10−123 3×10−131 6×10−126 4×10−124

IKAAR 10.57 7.67 ∗ 6×10−2 2×10−123 ∗ 7×10−1 ∗ 3×10−1 ∗ 7×10−1

CKAAR 10.60 7.90 ∗ 1×10− 3×10−131 ∗ 7×10−1 ∗ 1×10−1 ∗ 9×10−1

KOKO 10.31 7.64 1×10−2 6×10−126 ∗ 3×10−1 ∗ 1×10−1 7×10−3

KRRV 10.33 7.69 ∗ 3×10−1 4×10−124 ∗ 7×10−1 ∗ 9×10−1 7×10−3

RBF KRR KAAR IKAAR CKAAR KOKO KRRV
KRR 10.79 8.22 2×10−101 2×10−5 ∗ 5×10−1 8×10−3 ∗ 5×10−1

KAAR 15.45 9.86 2×10−101 5×10−123 2×10−122 2×10−116 2×10−109

IKAAR 10.60 7.68 2×10−5 5×10−123 5×10−3 ∗ 8×10−1 ∗ 9×10−2

CKAAR 10.78 7.98 ∗ 5×10−1 2×10−122 5×10−3 ∗ 5×10−2 ∗ 7×10−1

KOKO 10.59 7.88 8×10−3 2×10−116 ∗ 8×10−1 ∗ 5×10−2 2×10−2

KRRV 10.68 8.11 ∗ 5×10−1 2×10−109 ∗ 9×10−2 ∗ 7×10−1 2×10−2

75

Table 4.10: Percent improvements of our methods’ results on those of KRR
on the Gaze dataset in batch mode.

Method / % Improvement on KRR
Kernel Poly Spline ANOVA RBF
KAAR 53.18 −43.88 24.44 38.59
IKAAR 60.96 19.84 41.58 48.34
CKAAR 23.77 6.68 28.05 8.39
KOKO −5.91 −9.27 −0.60 −3.08
KRRV −5.41 −0.83 −2.10 0.82

4.5.6 Discussion

As shown in the Gaze dataset results tables, KAAR and our hybrid methods

obtain a statistically significant improvement over Kernel Ridge Regression

(KRR) in three cases (out of four kernels). In Table 4.10, we give the percent-

age improvement (i.e., how much less loss was suffered on average) per kernel

of our methods’ losses on those of KRR in the batch mode of learning. Here

KAAR can be seen to benefit from its extra regularisation. This is also true

for our hybrid methods IKAAR and CKAAR, with IKAAR suffering a loss

that is always less than that of both KRR and KAAR. The ‘control’ methods

KOKO and KRRV almost always suffer slightly more loss than KRR.

On more typical datasets our methods do not offer any advantages over

Kernel Ridge Regression. Indeed, on the popular Boston Housing dataset,

KAAR always suffers more loss than KRR. On the other hand, IKAAR and

CKAAR give a slight improvement over KRR on the 100 dataset shuffles from

Saunders et al. [1998]. However, this is not statistically significant and is not

confirmed by more extensive experiments. Therefore, on the Boston Housing

dataset IKAAR and CKAAR are comparable to KRR.

4.6 Conclusion

KAAR is the kernel version of an application of the Aggregating Algorithm

to the problem of regression. It has very interesting theoretical properties;

however, empirical analyses of KAAR show that its regularisation can be too

76

strong at times. To alleviate this we introduced several hybrid techniques that

merge KAAR and Kernel Ridge Regression (KRR). Experiments show that our

new methods can outperform KRR and KAAR on datasets that contain a lot of

noise or severe outliers such as in the Gaze dataset. Moreover, on the popular

Boston Housing dataset, which is more of a typical dataset, our hybrid methods

perform comparably to KRR. We also gave a Bayesian interpretation where it

can be seen that, under some assumptions, KAAR and our new methods push

KRR’s predictions towards the mean of the outcomes. The extent to which

this happens depends on the variance of KRR’s prediction itself.

77

Chapter 5

Regression with Changing

Dependencies

Traditional methods in machine learning, like Ridge Regression, make signif-

icant assumptions about the data. The Aggregating Algorithm for Regres-

sion (AAR) does not make any such assumptions. However, it does assume

that the relationship between signals and outcomes is fixed (see Section 4.2).

In this chapter we are unwilling to make this assumption and consider the

problem where the dependency of outcomes on signals can change with time.

An example of where this may be true is in financial data, where prices and

related parameters can change more or less continuously. We apply the Ag-

gregating Algorithm to the pool of experts made up off all predictors that can

change with time. This results in a new method, which we call the Kernel Ag-

gregating Algorithm for Regression with Changing dependencies (KAARCh),

that has good theoretical and empirical properties. For comparison, we also

derive a simple method that is a weighted version of CKAAR introduced in

Section 4.3.3.

5.1 Introduction

Consider the online regression problem where the dependence of the outcome yt

on the signal xt can change with time. An example of this is the prediction

of financial options implied volatility described in Section 5.4.2. Standard re-

78

gression techniques, like Ridge Regression, treat all training examples equally.

In time series theory there is a method called Generalized Autoregressive Con-

ditional Heteroskedasticity (GARCH) which assigns exponentially decreasing

weights to old examples [Bollerslev, 1986] (see also Hull [2005, Chapter 19]).

This method is used to estimate historical volatility in finance. We would like

to extend this idea to the more general problem of online regression.

In Section 5.2 we present two methods as a solution to this problem:

Weighted CKAAR (WeCKAAR) and the Kernel Aggregating Algorithm for

Regression with Changing dependencies (KAARCh). WeCKAAR is a sim-

ple method that adds decaying weights to our hybrid method CKAAR from

Section 4.3.3. KAARCh is a new method based on the Aggregating Algo-

rithm (AA). The AA, described in Chapter 2, allows us to merge experts from

large pools to obtain optimal strategies. Consider a sequence θ1, θ2, . . .; let it

make the prediction (θ1+θ2+. . .+θt)
′xt on trial t, where θ1, . . . , θt,xt ∈ Rn. To

get KAARCh, the AA is used to merge all predictors of this type. Clearly, our

class of experts is very large and we cannot compete in a reasonable sense with

every expert from this class. However, in Section 5.3 we show that KAARCh

can perform almost as well as any predictor if the latter is not changing very

rapidly, i.e., if each ‖θt‖ is small or only a few are nonzero. It turns out that

WeCKAAR and KAARCh have very similar prediction formulae.

A similar problem is considered in Herbster and Warmuth [2001], Kivinen

et al. [2004], and Cavallanti et al. [2007] for classification and regression. In

these publications, this problem is referred to as the non-stationary or shifting

target problem and the corresponding bounds are called shifting bounds. The

work by Herbster and Warmuth is closest to ours. However, their methods are

based on Gradient Descent and therefore their bounds are of a different type.

For instance, since our approach is based on the Aggregating Algorithm we

get a coefficient for the term representing the cumulative loss of the experts

equal to 1 (see Theorems 5 and 6), whereas those in the bounds of Herbster

and Warmuth [2001, Theorems 14–16] are greater than 1.

In practice, KAARCh can be used to predict parameters that change slowly

with time. KAARCh is more computationally expensive than the techniques

described in Herbster and Warmuth [2001], with time and space complexities

79

that grow with time. This is not desirable in an algorithm designed for online

learning; however, a practical implementation is described in Section 5.2.2.

Essentially, KAARCh is made to ‘forget’ older examples that do not affect the

prediction too much. We report the empirical performance of WeCKAAR and

KAARCh in Section 5.4; first on an artificial dataset, and then on options

implied volatility data. These results show that when dealing with changing

dependencies, KAARCh is an improvement on standard and weighted regres-

sion techniques. In addition, the performance of WeCKAAR and KAARCh on

options implied volatility data provided by the Russian Trading System Stock

Exchange (RTSSE) is comparable to that of the specially designed proprietary

technique currently being used.

5.2 Methods

We are interested in making predictions in online regression where the depen-

dency of yt on xt can change with time. We present two solutions to this prob-

lem: a simple method named WeCKAAR and our new method KAARCh. It is

interesting that the prediction formulae of these two methods are very similar.

5.2.1 WeCKAAR

Weighted CKAAR (WeCKAAR) is a simple modification of CKAAR (intro-

duced in Section 4.3.3) that employs a decaying factor such that old examples

are given less importance. The objective of WeCKAAR at time T is to find

a w that minimises

LT (W) = a‖w‖2 + b〈w,xT 〉2 +
T−1∑
t=1

dt(yt − 〈w,xt〉)2 , (5.1)

where a > 0, b ≥ 0, yt ∈ R, w,xt ∈ Rn, and dt ∈ R are nonnegative weights

that increase with t. Let dT = b and D = diag(d1, . . . , dT) be the diagonal

80

matrix with elements d1 . . . dT . Equation (5.1) can be rewritten as

LT (W) = a‖w‖2 +
(
ỹ − X̃w

)′
D
(
ỹ − X̃w

)
= aw′w + ỹ′Dỹ + w′X̃

′
DX̃w − 2w′X̃

′
Dỹ ,

where X̃ = (x1,x2, . . . ,xT)′ and ỹ = (y1, y2, . . . , yT−1, 0)′. If we differentiate

this with respect to w, divide throughout by 2 and make it equal to zero, we

get
1

2

∂LT (W)

∂w
= aw + X̃

′
DX̃w − X̃

′
Dỹ = 0 .

This implies that

w =
(
X̃
′
DX̃ + aI

)−1

X̃
′
Dỹ . (5.2)

Dual (Kernel) Form

Using Lemma 4 we can obtain a form of WeCKAAR’s prediction where signals

appear only in dot products. Accordingly, a prediction for the signal xT is made

by

γT = w′xT

= ỹ′
√

D
(√

DX̃X̃
′√

D + aI
)−1√

DX̃xT ,

where
√

D = diag
(√

d1, . . . ,
√

dT

)
. We now apply the kernel trick to obtain

the kernel version of WeCKAAR

γT = ỹ′
√

D
(√

DK̃
√

D + aI
)−1√

Dk̃ , (5.3)

where

√
DK̃

√
D =


d1k(x1,x1)

√
d1d2k(x1,x2) · · ·

√
d1dT k(x1,xT)

√
d2d1k(x2,x1) d2k(x2,x2) · · ·

√
d2dT k(x2,xT)

...
...

. . .
...

√
dT d1k(xT ,x1)

√
dT d2k(xT ,x2) · · · dT k(xT ,xT)

 ,

81

and

√
Dk̃ =


√

d1k(x1,xT)
√

d2k(x2,xT)
...

√
dT k(xT ,xT)

 .

5.2.2 KAARCh

For our second new method, we apply the Aggregating Algorithm (AA) to

the regression problem where the experts can change with time. We call this

method the Aggregating Algorithm for Regression with Changing dependen-

cies (AARCh). Subsequently, we will kernelise this to get Kernel AARCh

(KAARCh).

AARCh: Primal Form

The main idea behind AARCh is to apply the Aggregating Algorithm to the

case where the pool of experts is made up of all linear predictors that can

change independently with time. We assume that outcomes are bounded by Y ,

Y ∈ R, i.e., for any t, yt ∈ [−Y, Y] (we do not require our algorithm to

know Y). We are interested in the square loss, therefore we will be using

optimal η = 1/(2Y 2) and substitution function (2.8) on page 31. For details

on the square loss game, see Section 2.3.

An expert is a sequence θ1, θ2, . . ., that at time T predicts

x′T (θ1 + θ2 + . . . + θT) ,

where for any t, θt ∈ Rn and xT ∈ Rn. To apply the AA to this problem we

need to define a lower triangular block matrix L, and θ which is a concatenation

82

of all the θt for t = 1 . . . T , such that1

Lθ =



I 0 · · · · · · 0

I I
. . .

...
...

...
.

...

I I · · · I 0

I I · · · I I





θ1

θ2

...

θT−1

θT



=



θ1

θ1 + θ2

...

θ1 + θ2 + · · ·+ θT−1

θ1 + θ2 + · · ·+ θT−1 + θT


.

The matrices I and 0 in L are the n× n identity and all-zero matrices respec-

tively. We also need to define zt which is xt padded with zeros in the following

way

zt =

 0 · · · 0︸ ︷︷ ︸ x′t 0 · · · 0︸ ︷︷ ︸
n(t− 1) n(T − t)

′ ,

so that

z′tLθ = x′t(θ1 + θ2 + . . . + θt) .

Let at > 0, t = 1, . . . , T , be arbitrary constants. Consider the prior distri-

bution P0 in the set RnT of possible weights θ with the Gaussian density

P0(dθ) =

(
T∏

t=1

at

)n/2 (η

π

)nT/2

e−η
PT

t=1 at‖θt‖2dθ1 . . . dθT

=

((η

π

)T
T∏

t=1

at

)n/2

e−ηθ′Aθdθ ,

1The sum θ1 + . . . + θt corresponds to the predictor ut in Herbster and Warmuth [2001].

83

where, letting I and 0 be as above, we have

A =


a1I 0 · · · 0

0 a2I
. . .

...
...

. 0

0 · · · 0 aT I

 .

The loss of θ over the first T trials is

Loss T (θ) =
T∑

t=1

(yt − z′tLθ)
2

= θ′L′

(
T∑

t=1

ztz
′
t

)
Lθ − 2

(
T∑

t=1

ytz
′
t

)
Lθ +

T∑
t=1

y2
t .

Therefore, the loss of the APA is (recall that β = e−η)

Loss T (APA) = logβ

∫
RnT

βLoss T (θ)P0(dθ)

= logβ

∫
RnT

((η

π

)T
T∏

t=1

at

)n/2

× e−η(θ′L′(
PT

t=1 ztz′t)Lθ−2(
PT

t=1 ytz′t)Lθ+
PT

t=1 y2
t +θ′Aθ)dθ

= logβ

∫
RnT

((η

π

)T
T∏

t=1

at

)n/2

× e−ηθ′(L′
PT

t=1 ztz′tL+A)θ+2η(
PT

t=1 ytz′t)Lθ−η
PT

t=1 y2
t dθ .

Given the generalised prediction gT (ω) which is the APA’s loss with variable

ω ∈ R replacing yT and using substitution function (2.8) on page 31, the AA’s

prediction is

γT =
1

4Y
logβ

βgT (−Y)

βgT (Y)

=
1

4Y
logβ

∫
RnT e−ηθ′(L′

PT
t=1 ztz′tL+A)θ+2η(

PT−1
t=1 ytz′tL−Y z′T L)θdθ∫

RnT e−ηθ′(L′
PT

t=1 ztz′tL+A)θ+2η(
PT−1

t=1 ytz′tL+Y z′T L)θdθ
.

84

Let

Q1(θ) = θ′

(
L′

T∑
t=1

ztz
′
tL + A

)
θ − 2

(
T−1∑
t=1

ytz
′
tL− Y z′TL

)
θ , and

Q2(θ) = θ′

(
L′

T∑
t=1

ztz
′
tL + A

)
θ − 2

(
T−1∑
t=1

ytz
′
tL + Y z′TL

)
θ .

By Lemma 8

γT =
1

4Y
logβ

e−η min
θ∈RnT Q1(θ)

e−η min
θ∈RnT Q2(θ)

=
1

4Y

(
min

θ∈RnT
Q1(θ)− min

θ∈RnT
Q2(θ)

)
.

Finally, by using Lemma 9 we get

γT =
1

4Y
F

(
L′

T∑
t=1

ztz
′
tL + A, −2

T−1∑
t=1

ytz
′
tL, 2Y z′TL

)

=

(
T−1∑
t=1

ytz
′
t

)
L

(
L′

T∑
t=1

ztz
′
tL + A

)−1

L′zT . (5.4)

AARCh: Dual Form

Let us define

Z̃ =


z′1

z′2
...

z′T

 ,
√

A =


√

a1I 0 · · · 0

0
√

a2I
. . .

...
...

. 0

0 · · · 0
√

aT I

 , and ỹ =


y1

...

yT−1

0

 .

We can rewrite (5.4) in matrix notation to get

γT = ỹ′Z̃L
(
L′Z̃

′
Z̃L + A

)−1

L′zT

= ỹ′Z̃L
(√

A
(√

A
−1

L′Z̃
′
Z̃L

√
A
−1

+ I
)√

A
)−1

L′zT

= ỹ′Z̃L
√

A
−1
(√

A
−1

L′Z̃
′
Z̃L

√
A
−1

+ I
)−1√

A
−1

L′zT .

85

We can now get a dual formulation of this by using Lemma 4:

γT = ỹ′
(
Z̃LA−1L′Z̃

′
+ I
)−1

Z̃LA−1L′zT . (5.5)

KAARCh

Since in (5.5) signals appear only in dot products, we can use the kernel trick

to introduce nonlinearity. In this case we get Kernel AARCh (KAARCh) that

at time T makes a prediction

γT = ỹ′
(
K̄ + I

)−1
k̄ , (5.6)

where K̄ =
((∑min(i,j)

t=1
1
at

)
k(xi,xj)

)
i,j

, for i, j = 1, . . . , T , i.e.

K̄ =


1
a1

k(x1,x1)
1
a1

k(x1,x2) · · · 1
a1

k(x1,xT)
1
a1

k(x2,x1)
(

1
a1

+ 1
a2

)
k(x2,x2) · · ·

(
1
a1

+ 1
a2

)
k(x2,xT)

...
...

. . .
...

1
a1

k(xT ,x1)
(

1
a1

+ 1
a2

)
k(xT ,x2) · · ·

(
1
a1

+ . . . + 1
aT

)
k(xT ,xT)

 ,

and k̄ =
((∑i

t=1
1
at

)
k(xi,xT)

)
i
, for i = 1, . . . , T , i.e.

k̄ =


1
a1

k(x1,xT)(
1
a1

+ 1
a2

)
k(x2,xT)

...(
1
a1

+ . . . + 1
aT

)
k(xT ,xT)

 .

Implementation Notes

For simplicity, we may take all equal a1, a2, . . . , aT = a. In this case, KAARCh’s

prediction formula (5.6) becomes

γT = ỹ′
(
K̆ + aI

)−1

k̆ , (5.7)

86

where

K̆ =



1k(x1,x1) 1k(x1,x2) 1k(x1,x3) · · · 1k(x1,xT)

1k(x2,x1) 2k(x2,x2) 2k(x2,x3) · · · 2k(x2,xT)

1k(x3,x1) 2k(x3,x2) 3k(x3,x3) · · · 3k(x3,xT)
...

...
...

. . .
...

1k(xT ,x1) 2k(xT ,x2) 3k(xT ,x3) · · · Tk(xT ,xT)


,

and

k̆ =



1k(x1,xT)

2k(x2,xT)

3k(x3,xT)
...

Tk(xT ,xT)


.

Recalling that a scalar multiplied by a kernel is still a kernel, and making

allowances such that steps in time can be skipped (for instance there is no

data available for some steps), the coefficients 1, . . . , T in K̆ and k̆ can be

replaced with any increasing, positive real numbers t1, . . . , tT , representing the

real world time at which examples arrive.

5.3 Upper Bounds

In this section we use the Aggregating Algorithm’s properties to derive up-

per bounds on the cumulative square loss suffered by AARCh and KAARCh,

compared to that of any expert in the pool.

87

5.3.1 AARCh Loss Upper Bound

Theorem 5 For any point in time T and any at > 0, t = 1, . . . , T ,

Loss T (AARCh) ≤ inf
θ

(
Loss T (θ) +

T∑
t=1

at‖θt‖2

)

+ Y 2 ln det

(
√

A
−1

L′
T∑

t=1

ztz
′
tL
√

A
−1

+ I

)
. (5.8)

2

Proof Given the Aggregating Algorithm’s properties, we know that

Loss T (AARCh) ≤ logβ

∫
RnT

βLoss T (θ)P0(dθ)

= logβ

((η

π

)T
T∏

t=1

at

)n/2

×
∫

RnT

e−η(θ′(L′
PT

t=1 ztz′tL+A)θ−2(
PT

t=1 ytzt)Lθ+
PT

t=1 y2
t)dθ .

88

By Lemma 8 this is equal to

inf
θ

(Loss T (θ) + θ′Aθ)

+ logβ


((η

π

)T
T∏

t=1

at

)n/2

πnT/2√
det
(
ηL′∑T

t=1 ztz′tL + ηA
)


= inf
θ

(
Loss T (θ) +

T∑
t=1

at‖θt‖2

)
+ logβ

√√√√√
(
ηT
∏T

t=1 at

)n

det
(
ηL′∑T

t=1 ztz′tL + ηA
)

= inf
θ

(
Loss T (θ) +

T∑
t=1

at‖θt‖2

)
+

1

2
logβ

 ∏T
t=1 an

t

det
(
L′∑T

t=1 ztz′tL + A
)


= inf
θ

(
Loss T (θ) +

T∑
t=1

at‖θt‖2

)

− 1

2
logβ

det
(√

A
(√

A
−1

L′∑T
t=1 ztz

′
tL
√

A
−1

+ I
)√

A
)

∏T
t=1 an

t


= inf

θ

(
Loss T (θ) +

T∑
t=1

at‖θt‖2

)

+ Y 2 ln det

(
√

A
−1

L′
T∑

t=1

ztz
′
tL
√

A
−1

+ I

)
. �

5.3.2 KAARCh Loss Upper Bound

The following generalises Theorem 5. Note that we cannot repeat the proof

for the linear case directly since it involves the evaluation of an integral over

the space RnT .

Theorem 6 Let k be a kernel on a space X, let Dt, t = 1 . . . T , be any decision

rules in the RKHS F induced by k and let D = (D1, D2, . . . , DT)′. Then, for

89

any point in time T and every at > 0, t = 1, . . . , T ,

Loss T (KAARCh) ≤ Loss T (D) +
T∑

t=1

at‖Dt‖2 + Y 2 ln det
(
K̄ + I

)
. (5.9)

2

Proof It will be sufficient to prove this for Dt of the form

ft(x) =
l(t)∑
i=1

c
(t)
i k(v

(t)
i ,x) ,

where l(t) are positive integers, c
(t)
i ∈ R, and v

(t)
i ,x ∈ X (we use (t) to show

that these parameters can be different for each ft). This is because such finite

sums are dense in the RKHS F . If we take f = (f1, f2, . . . , fT)′, (5.9) becomes

Loss T (KAARCh) ≤ Loss T (f)

+
T∑

t=1

at

l(t)∑
i,j=1

c
(t)
i c

(t)
j k(v

(t)
i ,v

(t)
j) + Y 2 ln det

(
K̄ + I

)
, (5.10)

where

Loss T (f) =
T∑

t=1

yt −
l(t)∑
i=1

c
(t)
i k(v

(t)
i ,xt)

2

.

In the special case when X = Rn and k(vi,vj) = v′ivj for every vi,vj ∈ X,

(5.10) follows directly from (5.8). Indeed, a kernel predictor ft reduces to

the linear predictor θt =
∑l(t)

i=1 c
(t)
i v

(t)
i and the term

∑l(t)

i,j=1 c
(t)
i c

(t)
j k
(
v

(t)
i ,v

(t)
j

)
equals the squared quadratic norm of θt. Finally, by Sylvester’s determinant

identity (see also Lemma 10 for an independent proof of this) we know that

det
(
K̄ + I

)
= det

(
Z̃LA−1L′Z̃

′
+ I
)

= det
(√

A
−1

L′Z̃
′
Z̃L

√
A
−1

+ I
)

.

The general case follows from the linear case in the limit because of finite-

dimensional approximations (see the proof of Theorem 4 in Section 4.3.2). �

90

5.3.3 Analysis

In this section we shall analyse upper bound (5.9) in order to obtain an equiv-

alent of Corollary 1 in Section 4.2.1. Our goal is to show that KAARCh’s

cumulative loss is less or equal to that of a wide class of experts plus a term

of the order o(T).

Estimating the determinant of a positive definite matrix by the product

of its diagonal elements (see Beckenbach and Bellman [1961, Section 2.10,

Theorem 7]) and using the inequality ln(1+x) ≤ x (in our case x is small, and

therefore the resulting bound is tight), we get

Y 2 ln det
(
K̄ + I

)
≤ Y 2

T∑
t=1

ln

(
1 + u2

t∑
i=1

1

ai

)

≤ Y 2u2

T∑
t=1

t∑
i=1

1

ai

= Y 2u2

T∑
t=1

T − t + 1

at

,

where u = supx∈X

√
k(x,x).

It is natural to single out the first decision rule D1 and the corresponding

coefficient a1 from the rest. We may think of it as corresponding to the choice of

the ‘principal’ dependency; let the rest of Dt (t = 2, . . . , T) be small correction

terms. Let us take equal a2 = . . . = aT = a. The sum
∑T

t=2(T − t + 1)/at

becomes equal to (1/a) ((T − 1) + (T − 2) + . . . + 1). This can be recognised

as an arithmetic progression with (T − 1) terms and a common difference of 1.

Therefore it becomes T (T − 1)/(2a) and we get

Loss T (KAARCh) ≤ Loss T (D) +

(
a1‖D1‖2 +

Y 2u2T

a1

)
+

(
a

T∑
t=2

‖Dt‖2 +
Y 2u2T (T − 1)

2a

)
. (5.11)

If we bound the norm of D1 by d1 and assume that T is known in advance,

a1 may be chosen as in Corollary 1. The second term in the right hand side

91

of (5.11) can thus be bounded by O
(√

T
)
. If we assume that

∑T
t=2 ‖Dt‖2 ≤

s(T), where s(T) is some function that depends on T , the last term of (5.11)

becomes less or equal to

as(T) +
Y 2u2T (T − 1)

2a
. (5.12)

If we differentiate (5.12) with respect to a and set this equal to zero we find

the a that minimises the estimate above:

0 = s(T)− Y 2u2T (T − 1)

2a2

=⇒ a =

√
Y 2u2T (T − 1)

2s(T)
.

This means that the third term in the right hand side of (5.11) can be bounded

by O
(
T
√

s(T)
)
. If we substitute for a1 and a in (5.11) with the terms we

found that minimise it we get the following corollary:

Corollary 2 Under the conditions of Theorem 6, let T be known in advance

and u = supx∈X

√
k(x,x). For every every d1 > 0 and every function s(T), if

‖D1‖ ≤ d1 and
∑T

t=2 ‖Dt‖2 ≤ s(T), then at, for t = 1, . . . , T , can be chosen

so that

Loss T (KAARCh) ≤ Loss T (D)+2Y ud1

√
T +2Y u

√
s(T)T (T − 1)/2 . (5.13)

If s(T) = o(1), then Loss T (KAARCh) ≤ Loss T (D) + o(T). 2

The estimate s(T) = o(1) can be achieved in two natural ways. First, one

can assume that each ‖Dt‖, for t = 2, . . . , T , is small:

‖Dt‖2 =
1

T − 1
o(1) , i.e.,

‖Dt‖ =
1√
T

o(1) .

Let us now take polynomial o(1) of type d/T ε where d and ε are positive

92

constants to get

‖Dt‖ ≤
1√
T

d

T ε

=
d

T 0.5+ε
.

Therefore, in this case

s(T) ≤ T

(
d

T 0.5+ε

)2

=
d2

T 2(0.5+ε)−1

=
d2

T 2ε
.

Substituting this s(T) into (5.13) we get the following corollary:

Corollary 3 Under the conditions of Theorem 6, let T be known in advance.

For every positive d, d1, and ε, if ‖D1‖ ≤ d1 and, for t = 2, . . . , T ,

‖Dt‖ ≤
d

T 0.5+ε
,

then

Loss T (KAARCh) ≤ Loss T (D) + O
(
Tmax(0.5,(1−ε))

)
= Loss T (D) + o(T) . 2

Secondly, one may assume that there are only a few nonzero Dt, for t =

2, . . . , T . In this case, the nonzero Dt can have greater flexibility.

5.4 Empirical Results

In this section we measure the empirical performance of our methods on an

artificial dataset and on options implied volatility data.

93

0 50 100 150 200
−0.05

0

0.05

t

θ t

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

t

C
um

ul
at

iv
e

sq
ua

re
 lo

ss

KRR
WeCKAAR
KAARCh

(a) (b)

Figure 5.1: The behaviour of θt with time (a), approximating Brownian mo-
tion, and the cumulative loss suffered by KRR, WeCKAAR and KAARCh on
the artificial dataset (b).

5.4.1 Artificial Dataset

Let w1, . . . , wT ∈ R be T normally distributed random variables with mean 0

and variance σ2, and θt =
∑t

i=1 wi. Drawing xt ∈ R from the interval [0, 1]

using a uniform distribution, we generate a dataset by the equation

yt = θ′txt

=

(
t∑

i=1

wi

)′

xt .

The typical behaviour of a resulting θt with time can be seen in Figure 5.1 (a).

In the normal regression setting (where the dependency does not change with

time) this graph would simply be a flat line.

In our experiments, we set T = 200 and σ = 0.01, and repeated the

procedure 20 times on randomly generated datasets. We used the linear ker-

nel, which does not take any parameters. For WeCKAAR’s d1, . . . , dT and

KAARCh’s t1, . . . , tT , we used the numbers 1, . . . , T to indicate the passage of

time (these weights where subsequently normalised by dividing the values cur-

rently being used by their mean). To find good values of the parameter a, we

simply found a value for which a method performed well on all the previously

94

seen examples. For the first step we took a = 1 since we have no history on

which to perform validation. In Figure 5.1 (b) we show the mean over all runs

of the cumulative square loss suffered by KRR, WeCKAAR and KAARCh on

these datasets.

5.4.2 Options Implied Volatility Data

The Russian Trading System Stock Exchange (RTSSE) has provided us with

data containing the details of options transactions on several underlying assets.

Options are a type of derivative security (see Hull [2005] for more detailed

information on options). They give the right to sell (put option) or buy (call

option) an asset (like shares) which has current price St at some particular

strike price K at a specific point in time in the future (at maturity). On a

stock market, derivative securities are mainly used for hedging, that is, as an

insurance against possible changes in the value of the underlying asset.

The accurate pricing of these options is an important problem. The most

popular approach to pricing options is based on the Black-Scholes theory. This

assumes that St follows an exponential Wiener process with constant volatil-

ity σ. The parameter σ cannot be observed directly, but it can be estimated

from market data such as the price history (this estimate is called histori-

cal volatility). There are different types of options; we are interested in the

so called European options. In this case the price at time t of call and put

options, which we will denote by ct and pt respectively, are calculated by

ct = StN(d1)−KN(d2) , and

pt = ct + K − St ,

where N(x) is the probability density function of the normal distribution with

mean 0 and standard deviation 1, and given T which is the time until maturity

in years,

d1 =
ln(St/K) + (σ2/2)T

σ
√

T
, and

d2 = d1 − σ
√

T .

95

In practise this model is often violated. Given the current prices of options

and the underlying asset we can find σ that satisfies the formulae above. This σ

is known as the implied volatility and it exhibits a dependence on the strike

price and the time to maturity. The curve showing the dependence of the

implied volatility on the strike price is often called the volatility smile (see Hull

[2005, Chapter 16]). If time to maturity is taken into account too, we get a

volatility surface. The existence of volatility smiles and surfaces contradicts

the Black-Scholes model. There is no generally recognised theory describing

the phenomenon of implied volatility; however, it remains a useful parameter

and traders at a stock exchange often use it to quote option prices.

We are interested in using learning theory methods for predicting implied

volatilities without assuming any model for its behaviour. In our experiments

we treat the implied volatility of a transaction as the outcome and the param-

eters of the transaction, namely the asset price, the strike price, the time to

maturity, and whether an option is a put or a call, as the signal. In addition,

we used the time at which transactions occurred as our methods’ weights (see

below).

Experimentation Methodology

We tested the performance of KRR, WeCKAAR, and KAARCh on options

implied volatility data. As usual, we need to find good values for any tunable

parameters of the methods employed. For the weights required by our new

methods, specifically, WeCKAAR’s d1, . . . , dT and KAARCh’s t1, . . . , tT , we

use a real number representing the (normalised) time at which the transactions

occurred. This number was provided by the RTSSE and in our experiments we

subtract the minimum and add 1 so that time starts from 1. To normalise time

we simply divide the values currently being used by their mean. The kernels

used in our experiments are spline, polynomial degree 2, and RBF with σ = 1

(see Section 3.2.1)2.

What remains to be done is to find good values for the parameter a

(see (3.8) on page 40, (5.3), and (5.7)). This is achieved by applying a sliding

2These particular kernel parameters were chosen because they performed well in prelim-
inary experiments.

96

window technique (the window size was set to 50), finding a good value for a

on the first window and then making predictions on the next window in online

mode. This is repeated for the whole dataset, meaning that the parameter a is

updated after every 50 transactions. We applied normalisation schemes similar

to what is described in Section 4.5.2. WeCKAAR and KAARCh function bet-

ter if the mean of the outcomes is 0. We handle this by shifting the outcomes

down by the mean of the outcomes of the previous window and later shift the

predictions up by this same amount. Due to computational limitations, we ran

experiments on 100 randomly selected segments containing 200 transactions

from every dataset.

Results

In Table 5.1 we give the results obtained on options data for EERU, GAZP

and RTSI. EERU are options on futures on shares of Unified Power Systems

of Russia, GAZP are options on futures on shares of Gazprom, and RTSI are

options on an RTSSE index (the numbers appended to the option names in

the table specify different transaction periods). These options were chosen

because they are popular and therefore are traded all the time.

The left half of the table shows the mean square losses suffered by WeCK-

AAR, KAARCh and KRR using different kernels, and also those of the pro-

prietary method used at the RTSSE for comparison. The method used at

the RTSSE is based on Kalman Filters (see Maybeck [1979, Chapter 1] for

an introduction to Kalman Filters) and some assumptions on the shape of the

volatility curve are made. This contrasts with our methods, where we make no

assumptions at all (our methods’ applicability is not limited to options data)

and use general purpose kernels.

To measure the statistical significance of the difference between the results

of our methods and those of the RTSSE we used the Wilcoxon signed rank

test (see, for example, Hollander and Wolfe [1973]). When there is no statis-

tical significance in the difference (we use the conventional 5% threshold) the

corresponding p-value reported in the other half of the table is prefixed with

an asterisk (∗). A description of statistical significance and p-values is given

in Section 4.5.3.

97

Table 5.1: Mean square losses suffered on options implied volatility data. All
losses reported are ×103, apart from those for EERU1206 which are ×102.

Dataset: RTSI1206 (10126 transactions)
RTSSE: 2.91 Statistical significance of difference

Kernel KRR WeCKAAR KAARCh KRR WeCKAAR KAARCh
Poly 36.56 2.19 2.16 4×10−4 5×10−2 ∗ 8×10−2

Spline 2.63 2.23 2.24 9×10−4 ∗ 9×10−2 ∗ 9×10−2

RBF 3.31 2.33 2.31 1×10−4 5×10−2 5×10−2

Dataset: RTSI0307 (8410 transactions)
RTSSE: 2.78 Statistical significance of difference

Kernel KRR WeCKAAR KAARCh KRR WeCKAAR KAARCh
Poly 8.29 2.40 2.38 7×10−12 2×10−7 2×10−7

Spline 3.49 2.29 2.29 5×10−7 2×10−6 3×10−6

RBF 3.87 2.33 2.32 3×10−7 9×10−7 1×10−6

Dataset: GAZP1206 (9382 transactions)
RTSSE: 1.29 Statistical significance of difference

Kernel KRR WeCKAAR KAARCh KRR WeCKAAR KAARCh
Poly 1.59 1.54 1.53 2×10−8 1×10−8 8×10−9

Spline 5.21 1.49 1.49 4×10−10 4×10−8 4×10−8

RBF 1.59 1.47 1.48 4×10−8 6×10−8 3×10−8

Dataset: GAZP0307 (10985 transactions)
RTSSE: 2.13 Statistical significance of difference

Kernel KRR WeCKAAR KAARCh KRR WeCKAAR KAARCh
Poly 3.16 2.45 2.45 6×10−11 2×10−8 2×10−8

Spline 2.85 2.47 2.47 5×10−7 4×10−8 4×10−8

RBF 3.53 2.49 2.49 1×10−7 6×10−8 5×10−8

Dataset: EERU1206 (13152 transactions)
RTSSE: 1.47 Statistical significance of difference

Kernel KRR WeCKAAR KAARCh KRR WeCKAAR KAARCh
Poly 162.43 1.71 1.72 3×10−7 2×10−8 4×10−8

Spline 1.92 1.65 1.66 3×10−7 4×10−7 5×10−7

RBF 6.36 1.65 1.65 3×10−7 1×10−7 2×10−7

Dataset: EERU0307 (14776 transactions)
RTSSE: 4.74 Statistical significance of difference

Kernel KRR WeCKAAR KAARCh KRR WeCKAAR KAARCh
Poly 5.49 4.58 4.52 2×10−4 3×10−2 4×10−2

Spline 5.07 4.49 4.50 4×10−3 4×10−2 4×10−2

RBF 5.83 4.46 4.49 5×10−4 ∗ 6×10−2 5×10−2

98

5.5 Conclusion

In this chapter we introduced two new methods, WeCKAAR and KAARCh, to

make predictions in online regression with changing dependencies. KAARCh

has superior theoretical properties, including an upper bound on its loss that

guarantees that at most it will suffer loss that is only a little more than that of

any predictor that does not change very rapidly. Empirical experiments were

carried out on artificial data and on six real world datasets on options implied

volatility.

KAARCh’s performance on the artificial dataset is much better than that

of WeCKAAR and KRR. We attribute this to the fact that the artificial data

was generated by a process that changes slowly at every step, which is ideal

for KAARCh given its theoretical properties. The results achieved on the real

world datasets by KAARCh and WeCKAAR are always better than those of

KRR and very close to those of the RTSSE (and slightly better in half of them).

The proprietary method used at the RTSSE was specifically designed for this

application and is constantly monitored and tuned by experts to predict bet-

ter. Therefore, it is remarkable that our methods perform comparably. These

results show that our new methods KAARCh and (to a lesser extent) WeCK-

AAR are capable of handling changing dependencies and, in this context, are

an improvement on standard regression techniques.

99

Chapter 6

Conclusion

In this dissertation we have considered the problem of regression, where we are

given a signal and are required to output a real valued prediction. We suffer

loss if our prediction does not perfectly match the outcome of the signal, which

is given to us later. Early solutions to this problem include Least Squares (LS)

and Ridge Regression (RR). LS gives a solution that fits the data too well,

that is, it overfits the data. RR includes regularisation, in that it balances the

goodness of the solution with its complexity, leading to better generalisation.

RR can be seen as an improvement of LS, especially in the case where the data

contains noise or outliers.

The Aggregating Algorithm (AA) is a technique that allows us to merge

large pools of experts to make optimal predictions. These optimal predictions

are almost as good as those of the best expert in the pool. Recently, the AA

was applied to the problem of regression, to get the Aggregating Algorithm for

Regression (AAR) and its nonlinear version, Kernel AAR (KAAR). Their main

focus is on the online mode of learning, where signals and outcomes appear

in a sequence and we are required to make a prediction at every step. Unlike

Ridge Regression, AAR and KAAR have theoretical worst case upper bounds

on their cumulative loss and they do not make any significant assumptions on

the data.

100

6.1 Achievements

Our work is based on the application of the Aggregating Algorithm to problems

in regression. We first analysed and improved the existing solutions and then

derived a new algorithm for a harder regression problem.

6.1.1 Improving the Aggregating Algorithm for Regres-

sion

In empirical experiments we carried out (see Section 4.3 and Section 4.5), it

is evident that most of the time KAAR does not perform as well as Ker-

nel RR (KRR), the nonlinear version of Ridge Regression. KAAR is better

than KRR only when the data is corrupted with lots of noise or contains se-

vere outliers. Through analyses we found that this happens because KAAR

includes some extra regularisation compared to KRR. Subsequently, we intro-

duced new methods that through the use of an extra parameter can control

or remove this extra regularisation. We have named our two main methods

Iterated KAAR (IKAAR) and Controlled KAAR (CKAAR).

These methods are a generalisation of both KAAR and KRR as they can

be made to behave as either one by choosing specific values for their extra

parameter. In a comparison with KRR, we found that in a Bayesian interpre-

tation, KAAR and our methods push KRR’s predictions towards the mean of

the outcomes by an amount proportional to the prediction’s variance. Empir-

ical experiments suggest that, in general, our new methods perform as well as

or better than KRR and KAAR.

6.1.2 Regression with Changing Dependencies

It is usually assumed that the relationship between a signal and its outcome

are fixed. However, there are cases where this is not true and we need to

handle the possibility that this dependency changes with time. An example of

this is predicting options implied volatility as explained in Section 5.4.2.

Our first solution to this problem was to modify our own method CK-

AAR, mentioned above, such that it gives less importance to older examples.

101

This was done since the relationship between older signals and their outcomes

is outdated and therefore should be ignored to some degree. We called the

resulting algorithm Weighted CKAAR (WeCKAAR).

The second solution that we present is an application of the Aggregat-

ing Algorithm (AA) to the pool containing all linear predictors that can

change with time. The nonlinear version of the resulting method is called

the Kernel Aggregating Algorithm for Regression with Changing dependen-

cies (KAARCh). Given the AA’s properties, we were able to derive an upper

bound on KAARCh’s cumulative loss. This states that at worst KAARCh will

suffer a cumulative loss that is less or equal to that of any changing (nonlinear)

predictor plus a small term, if the predictor does not change very rapidly.

Empirical results show that WeCKAAR and KAARCh are able to pre-

dict changing dependencies, consistently performing better than Kernel Ridge

Regression (KRR). This is evident when running experiments on both arti-

ficial data and on options implied volatility data. On an artificial dataset,

KAARCh performs much better than WeCKAAR and KRR. On the options

implied volatility data, which was given to us by the Russian Trading System

Stock Exchange (RTSSE), both our methods perform comparably to the pro-

prietary technique currently being used at the RTSSE, even though they are

applicable to a much wider class of problems.

6.2 Future Work

1. An interesting experiment would be to try out KRR, KAAR, IKAAR and

CKAAR on an artificial dataset with different levels of noise and/or some

severe outliers to see when our methods start to make an improvement.

A possible dataset could be the Mexican Hat dataset generated by y =

sin(|x|)/|x| + ε where x ∈ [−10, 10] and ε is some noise (this dataset is

also mentioned in Section B.1.1).

2. Our methods that improve the predictive performance of KAAR, like

IKAAR and CKAAR, require one extra parameter. This parameter con-

trols the amount of extra regularisation (compared to Ridge Regression)

102

used during prediction. There may be a correlation between the amount

of noise or number of outliers in the data and the magnitude of this

parameter. If this conjecture is correct, then it can be leveraged in at

least two ways. First, it would be natural to try to automatically find

a good value of this extra parameter by using some heuristics from the

data. Secondly, going the other direction, one could use good values of

this parameter, found through validation or otherwise, as a measure of

the ‘difficulty’ or complexity of the data.

3. In a related note to the previous item, it would be interesting to see the

effect of having the control parameter adapt on the fly. This could be

achieved by making its magnitude proportional to the complexity of the

signal for which a prediction is to be made. One straightforward way of

measuring the complexity of a signal is by taking its norm.

4. To obtain KAARCh, we apply the AA to the pool consisting of all chang-

ing predictors. To do this, we pad our signals with zeros, to get a new

vector of dimensionality nT , where n is the original dimensionality of

the signal and T is the current step in time. This results in a matrix

in the primal form of size nT × nT . In AAR, where the experts do not

change, the corresponding matrix is of size n×n. It would be worthwhile

to investigate whether it is possible to merge all changing predictors in

a way that does not result in such a big matrix. In the dual form we

do not have this problem, since the matrix is of size T × T which is the

same as that of KAAR.

5. In this dissertation we derived an upper bound on the cumulative loss

suffered by KAARCh. To measure the tightness of this bound it is

necessary to derive a lower bound on KAARCh’s loss, similar to what

Vovk did for AAR in Vovk [2001, Section 3.3]. In Corollary 3 the term

‖Dt‖ ≤ d/T 0.5+ε tells us that KAARCh is competitive with experts that

fluctuate slightly less than Brownian motion. If ε = 0 then the experts

become more or less equivalent to Brownian motion and KAARCh can-

not compete against them in a reasonable sense any more. This may be

a possible direction to find a lower bound on KAARCh’s loss.

103

6. In Section 5.3.3 we analyse KAARCh’s loss upper bound and derive a

new upper bound by restricting the experts we compete against. More

analysis of KAARCh’s upper bound, like considering other restrictions

on the experts, can give us new bounds and a better insight into our new

method.

7. More empirical experiments on KAARCh and WeCKAAR, especially

applying them to other problems apart from predicting options implied

volatility, will enable us to measure their predictive performance better.

In addition, it would be very interesting to have an empirical compar-

ison of our methods with similar techniques such as those described in

Section 5.1.

8. To compute a prediction by KAARCh and WeCKAAR a T × T matrix

has to be inverted. In the online mode of learning T may continue to

grow indefinitely, which is not desirable. Our practical implementation

of these methods is to drop older examples and work with a fixed window

of examples instead. From a conceptual point of view this makes sense

because older examples are given much less weight than newer ones and

their omission should only make a small difference to the prediction, if

any. It is desirable, therefore, to measure the difference between this

approximation and the true prediction and verify that it is small and

insignificant. A straightforward way of doing this is by running two

separate empirical experiments on the same data: one computing the true

predictions and the other just the approximations. The difference can

then be calculated and advantages of speed of computation against loss

of precision be measured. Another, more precise way of achieving this is

to analyse mathematically the difference in the prediction formulae.

9. In computing predictions for WeCKAAR and KAARCh (and also KRR)

in Section 5.4.2 we fix a window and use this as the history from which

we get statistics and to find good values for any parameters required.

This is somewhat crude as the parameter gets updated only at fixed

intervals and it may be that better results can be achieved if the size

of this window can change. Therefore, a better experimentation method

104

for KAARCh and WeCKAAR in the online mode of learning may give

better predictive performance.

6.3 Final Remarks

The objectives set for the dissertation were met. We have analysed an ex-

isting application of the Aggregating Algorithm (AA) to regression and sug-

gested improvements. These improved methods perform well when compared

to competing techniques. We also consider the regression problem where the

dependency of outcomes on signals can change with time. We give two solu-

tions: the first is based on one of the improvements mentioned above, and the

other is an application of the AA to merge all the predictors that can change

with time. We show that the latter solution performs almost as well as the best

slowly changing predictor in terms of the square loss it suffers. In empirical

experiments both these methods perform well.

105

Bibliography

M. Aizerman, E. Braverman, and L. Rozonoer. Theoretical foundations of the

potential function method in pattern recognition learning. Automation and

Remote Control, 25:821–837, 1964.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American

Mathematical Society, 68:337–404, 1950.

A. Asuncion and D. J. Newman. UCI machine learning repository (http:

//www.ics.uci.edu/∼mlearn/mlrepository.html), 2007.

E. F. Beckenbach and R. Bellman. Inequalities. Springer-Verlag, Berlin, Ger-

many, 1961.

T. Bollerslev. Generalized autoregressive conditional heteroskedasticity. Jour-

nal of Econometrics, 31:307–327, 1986.

C. J. C. Burges and V. Vapnik. A new method for constructing artificial neural

networks. Technical Report ONR contract N00014-94-c-0186, AT&T Bell

Laboratories, 1995.

G. Cavallanti, N. Cesa-Bianchi, and C. Gentile. Tracking the best hyperplane

with a simple budget perceptron. Machine Learning, 69(2–3):143–167, 2007.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge

University Press, Cambridge, UK, 2006.

J. B. Conway. A Course in Functional Analysis. Graduate Texts in Mathe-

matics. Springer, USA, second edition, 2000.

106

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Ma-

chines (and Other Kernel-Based Learning Methods). Cambridge University

Press, Cambridge, UK, 2000.

H. Drucker, C. Burges, L. Kaufman, A. Smola, and V. Vapnik. Support vector

regression machines. In Proceedings of the 1996 Conference on Advances in

Neural Information Processing Systems, volume 9, pages 155–161. The MIT

Press, 1997.

A. Gammerman, Y. Kalnishkan, and V. Vovk. On-line prediction with kernels

and the complexity approximation principle. In Proceedings of the 20th

Conference on Uncertainty in Artificial Intelligence, pages 170–176. AUAI

Press, 2004.

D. Haussler, J. Kivinen, and M. K. Warmuth. Sequential prediction of indi-

vidual sequences under general loss functions. IEEE Transactions on Infor-

mation Theory, 44:1906–1925, 1998.

R. Herbrich. Learning Kernel Classifiers: Theory and Algorithms. The MIT

Press, Cambridge, Massachusetts, USA, 2002.

M. Herbster and M. K. Warmuth. Tracking the best linear predictor. Journal

of Machine Learning Research, 1:281–309, 2001.

A. E. Hoerl. Application of ridge analysis to regression problems. Chemical

Engineering Progress, 58:54–59, 1962.

M. Hollander and D. A. Wolfe. Nonparametric Statistical Methods. John Wiley

& Sons, New York, USA, 1973.

J. C. Hull. Options, Futures and Other Derivatives. Prentice-Hall, New Jersey,

USA, 6th edition, 2005.

V. I. Istratescu. Fixed Point Theory, An Introduction. Springer, USA, 1981.

J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels.

IEEE Transactions on Signal Processing, 52(8):2165–2176, 2004.

107

P. S. Maybeck. Stochastic Models, Estimation, and Control, volume 1. Aca-

demic Press, USA, 1979.

T. Melluish, C. Saunders, I. Nouretdinov, and V. Vovk. Comparing the Bayes

and typicalness frameworks. In Machine Learning: EMCL 2001. Proceedings

of the Twelfth European Conference on Machine Learning, volume 2167 of

Lecture Notes in Computer Science, pages 360–371, Heidelberg, Germany,

2001. Springer.

T. M. Mitchell. Machine Learning. McGraw-Hill, USA, 1997.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical

Recipes in C. Cambridge University Press, Cambridge, UK, second edition,

1994.

J. Quiñonero-Candela, I. Dagan, B. Magnini, and F. D’Alché-Buc, editors.

Evaluating Predictive Uncertainty, Visual Object Categorization and Textual

Entailment, volume 3944 of Lecture Notes in Computer Science, Heidelberg,

Germany, 2006. Springer.

C. Saunders, A. Gammerman, and V. Vovk. Ridge regression learning algo-

rithm in dual variables. In Proceedings of the 15th International Conference

on Machine Learning, pages 515–521. Morgan Kaufmann, 1998.

B. Schölkopf and A. J. Smola. Learning with Kernels — Support Vector Ma-

chines, Regularization, Optimization and Beyond. The MIT Press, Cam-

bridge, Massachusetts, USA, 2002.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis.

Cambridge University Press, Cambridge, UK, 2005.

M. Stitson, A. Gammerman, V. Vapnik, V. Vovk, C. Watkins, and J. We-

ston. Support vector regression with ANOVA decomposition kernels. In

B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in kernel

methods — support vector learning, pages 285–292. MIT Press, Cambridge,

MA, USA, 1999.

108

V. Vovk. Competitive on-line statistics. International Statistical Review, 69

(2):213–248, 2001.

V. Vovk. On-line regression competitive with reproducing kernel Hilbert

spaces. Technical Report arXiv:cs.LG/0511058 (version 2), arXiv.org e-Print

archive, 2006.

V. Vovk. Aggregating strategies. In M. Fulk and J. Case, editors, Proceedings

of the 3rd Annual Workshop on Computational Learning Theory, pages 371–

383. Morgan Kaufmann, 1990.

V. Vovk. A game of prediction with expert advice. Journal of Computer and

System Sciences, 56:153–173, 1998.

V. Vovk, A. Gammerman, and G. Shafer. Algorithmic learning in a random

world. Springer, New York, USA, 2005.

109

Appendix A

Lemmas

Lemma 4 Given a matrix A, a scalar a and I identity matrices of the appro-

priate size,

(AA′ + aI)−1A = A(A′A + aI)−1 . 2

Proof

(AA′ + aI)−1A = (AA′ + aI)−1A(A′A + aI)(A′A + aI)−1

= (AA′ + aI)−1(AA′A + aA)(A′A + aI)−1

= (AA′ + aI)−1(AA′ + aI)A(A′A + aI)−1

= A(A′A + aI)−1
�

Lemma 5 (Banach Fixed Point Theorem; see, for example, Istratescu

[1981, Chapter 7]) Let (X, d) be a nonempty complete metric space. Let

T : X 7→ X be a contraction mapping on X, i.e., there is a real number

0 ≤ q < 1 such that

d(Tx, Ty) ≤ qd(x, y)

for all x, y ∈ X. Then the map T admits one and only one fixed point ẋ ∈ X,

that is, T ẋ = ẋ. 2

Lemma 6 (Matrix Inversion by Partitioning; see Press et al. [1994,

Section 2.7]) Suppose that we are given a matrix A of size n× n partitioned

110

in the following way

A =

[
P Q

R S

]
,

where P and S are square matrices of size p×p and s×s respectively (p+s = n),

and Q and R of size p × s and s × p respectively (not necessarily square). If

its inverse is partitioned in the same manner

A−1 =

[
P̃ Q̃

R̃ S̃

]
,

then P̃, Q̃, R̃ and S̃ which have the same sizes as P, Q, R and S respectively,

can be calculated by the following formulae (provided all the inverses exist):

P̃ = P−1 + P−1Q(S−RP−1Q)−1RP−1;

Q̃ = −P−1Q(S−RP−1Q)−1;

R̃ = −(S−RP−1Q)−1RP−1;

S̃ = (S−RP−1Q)−1 . 2

Lemma 7 (Riesz Representation Theorem; see, for example, Conway

[2000, Theorem 3.4]) Let H be a Hilbert space. If L : H 7→ R is a bounded

linear functional, then there is a unique vector h0 ∈ H such that L(h) = 〈h, h0〉
for every h ∈ H. Moreover, ‖L‖ = ‖h0‖. 2

Lemma 8 Let Q(θ) = θ′Aθ +b′θ + c, where θ,b ∈ Rn, c is a scalar and A is

a symmetric positive definite n× n matrix. Then∫
Rn

e−Q(θ)dθ = e−Q0
πn/2

√
detA

,

where Q0 = minθ∈Rn Q(θ). 2

Proof Let θ0 ∈ arg min Q. Take ξ = θ − θ0 and Q̃(ξ) = Q(ξ + θ0). It is easy

to see that the quadratic part of Q̃ is ξ′Aξ. Since 0 ∈ arg min Q̃, the form has

no linear term. Indeed, in the vicinity of 0 the linear term dominates over the

quadratic term; if Q̃ has a non-zero linear term, it cannot have a minimum

111

at 0. Since Q0 = minξ∈Rn Q̃(ξ), we can conclude that the constant term in Q̃

is Q0. Thus Q̃(ξ) = ξ′Aξ + Q0.

It remains to show that
∫

Rn e−ξ′Aξdξ = πn/2/
√

detA. This can be proved

by considering a basis where A diagonalises (or see Beckenbach and Bellman

[1961, Section 2.7, Theorem 3]). �

Lemma 9 Let

F (A,b,x) = min
θ∈Rn

(θ′Aθ + b′θ + x′θ)− min
θ∈Rn

(θ′Aθ + b′θ − x′θ) ,

where b,x ∈ Rn and A is a symmetric positive definite n × n matrix. Then

F (A,b,x) = −b′A−1x. 2

Proof It can be shown by differentiation that the first minimum is achieved

at θ1 = −1
2
A−1(b + x) and the second minimum at θ2 = −1

2
A−1(b− x). The

substitution proves the Lemma. �

Lemma 10 (Sylvester’s Determinant Identity) For every matrix M the

equality det(I + M′M) = det(I + MM′) holds (where I are identity matrices

of the correct size). 2

Proof Suppose that M is an n×m matrix. Thus (I+MM′) and (I+M′M)

are n×n and m×m matrices respectively. Without loss of generality we may

assume that n ≥ m (otherwise we swap M and M′). Let the columns of M

be m vectors x1, . . . ,xm ∈ Rn.

We have MM′ =
∑n

i=1 xix
′
i. Let us see how the operator MM′ acts on a

vector x ∈ Rn. By associativity xix
′
ix = (x′ix)xi, where x′ix is a scalar. There-

fore, if U is the span of x1,x2, . . . ,xm, then MM′(Rn) ⊆ U . In a similar way,

it follows that (I+MM′)(U) ⊆ U . On the other hand, if x is orthogonal to xi,

then xix
′
ix = (x′ix)xi = 0. Hence MM′(U⊥) = 0, where U⊥ is the orthogo-

nal complement to U with respect to Rn. Consequently, (I + MM′)|U⊥ = I

(by B|V we denote the restriction of an operator B to a subspace V). There-

fore (I + MM′)(U⊥) ⊆ U⊥.

One can see that both U and U⊥ are invariant subspaces of (I + MM′). If

we choose bases in U and in U⊥ and then concatenate them, we get a basis

112

of Rn. In this basis the matrix of (I + MM′) has the form[
A 0

0 I

]
,

where A is the matrix of (I + MM′)|U . It remains to evaluate det(A).

First let us consider the case of linearly independent x1,x2, . . . ,xm. They

form a basis of U and we may use it to calculate the determinant of the operator

(I + MM′)|U . However,

(I + MM′)xi = xi +
m∑

j=1

(x′jxi)xj ,

and thus the matrix of the operator (I + MM′)|U in the basis x1,x2, . . . ,xm

is (I + M′M).

The case of linearly dependent x1,x2, . . . ,xm follows by continuity. Indeed,

m vectors in an n-dimensional space with n ≥ m may be approximated by

m independent vectors to any degree of precision and the determinant is a

continuous function of the elements of a matrix. �

113

Appendix B

Additional Empirical Results

In Section 4.5 we gave a detailed analysis of the empirical performance of

KRR, KAAR, IKAAR, CKAAR, KOKO, and KRRV on the Gaze dataset

and on the Boston Housing dataset. In this appendix we present preliminary

results obtained on the artificial Mexican Hat dataset and on Abalone, Auto-

MPG, Auto-Price, Relative CPU Performance, Servo and Wisconsin Prognos-

tic Breast Cancer datasets (all from Asuncion and Newman [2007]).

B.1 Results

The results reported here are for the batch mode only and do not include

results for the control methods KOKO and KRRV. Note that for all datasets

except the artificial Mexican Hat dataset we performed 100 runs on random

permutations of the data. The experimentation procedure used to obtain these

results is the same as that explained in Section 4.5, but with the following

differences:

• Kernels are not normalised;

• The translation of outcomes is done by shifting down all outcomes by

the mean of the outcomes in the whole dataset and not just that of those

in the training set;

• The actual value of the parameter a used is calculated by multiplying the

114

Table B.1: Validation parameters used for experiments on the Mexican Hat
datasets.

Parameter Name Values
Polynomial degree 6
Spline (no parameters)
ã 0.1
IKAAR m 1, 2, . . . , 5
CKAAR b 0, 0.01, . . . , 1

specified parameter ã by the mean of the diagonal of the kernel matrix,

i.e., the trace divided by the dimension of the kernel matrix.

B.1.1 The Mexican Hat Dataset

The artificial Mexican Hat dataset is generated by the function

yt =
sin(|xt|)
|xt|

+ εt ,

where xt ranges over the interval [−10, 10] and εt ∈ R is some noise. Plotting

this function gives a graph that somewhat resembles the cross section of a

tradition Mexican hat, hence the name. In our experiments we took 100 signals

from the interval (and their corresponding outcomes) starting from −10 and

going up to 10 with a step of 0.2, skipping 0. Two separate experiments were

performed using noise (εt) taken from normal distributions with mean 0 and

standard deviations 0.2 and 0.5.

1000 random permutations where taken and each permutation of the dataset

was split into 50, 30 and 20 examples for training, validation and testing re-

spectively. All the combinations of the parameters shown in Table B.1 were

used during the validation stage. For this dataset we used a spline kernel and

a polynomial kernel of degree 6 only. The results are in Table B.2. Note that

the testing outcomes are not corrupted by noise, therefore the losses reported

are due to the model error only.

115

Table B.2: Batch mode results on 1000 random permutations of the Mexican
Hat datasets with noise from N(0, 0.2) and N(0, 0.5).

Method MSE SD Statistical Significance of Difference

Mexican Hat dataset with noise from N(0, 0.2)
Poly ×10−2 ×10−2 KRR KAAR IKAAR CKAAR
KRR 9.47 2.41 2×10−26 1×10−58 8×10−78

KAAR 9.38 2.47 2×10−26 ∗ 9×10−1 ∗ 1×10−1

IKAAR 9.38 2.44 1×10−58 ∗ 9×10−1 1×10−14

CKAAR 9.37 2.43 8×10−78 ∗ 1×10−1 1×10−14

Spline ×10−2 ×10−2 KRR KAAR IKAAR CKAAR
KRR 7.55 2.09 7×10−71 5×10−4 2×10−53

KAAR 7.65 2.17 7×10−71 1×10−101 4×10−134

IKAAR 7.55 2.11 5×10−4 1×10−101 6×10−160

CKAAR 7.53 2.10 2×10−53 4×10−134 6×10−160

Mexican Hat dataset with noise from N(0, 0.5)
Poly ×10−2 ×10−2 KRR KAAR IKAAR CKAAR
KRR 11.36 3.43 9×10−109 3×10−115 4×10−125

KAAR 11.04 3.35 9×10−109 2×10−11 4×10−3

IKAAR 11.04 3.34 3×10−115 2×10−11 8×10−13

CKAAR 11.05 3.34 4×10−125 4×10−3 8×10−13

Spline ×10−2 ×10−2 KRR KAAR IKAAR CKAAR
KRR 9.18 2.92 7×10−3 3×10−4 5×10−25

KAAR 9.16 2.97 7×10−3 2×10−32 2×10−47

IKAAR 9.13 2.96 3×10−4 2×10−32 2×10−59

CKAAR 9.12 2.95 5×10−25 2×10−47 2×10−59

116

Table B.3: Validation parameters used for experiments on the Abalone dataset.

Parameter Name Values
Polynomial degree 2, 4, 6, 8
Spline (no parameters)
ANOVA spline order 2, 4, 6, 8
RBF σ 2−10, 2−8, . . . , 22

ã 2−16, 2−14, . . . , 2−4

IKAAR m 1, 21, . . . , 201
CKAAR b 0, 0.3, 0.5, 0.7, 0.8, 0.9, 0.95, 0.99, 1

B.1.2 The Abalone Dataset

The age in years of an abalone is determined by counting the number of rings in

a cross section of its shell through a microscope and adding 1.5. The goal in the

Abalone dataset is to predict the ages of abalones from 8 features corresponding

to physical measurements. These measurements, which include the length and

weight, are relatively easy to obtain.

The dataset contains 4177 examples and 100 random permutations where

taken. Each permutation of the dataset was split into 1000, 100 and 3077

examples for training, validation and testing respectively. All the combinations

per kernel of the parameters shown in Table B.3 were used during the validation

stage. The results are in Table B.4.

B.1.3 The Auto-MPG Dataset

The Auto-MPG dataset contains details of cars and their performance in terms

of their fuel consumption in miles per gallon (mpg). In our experiment the

mpg of a car was predicted given its features. 7 attributes were used, including

features like the number of cylinders in the car’s engine and its weight. Signals

that have missing values were not included in the experiment.

The dataset used contains 392 examples and 100 random permutations

where taken. Each permutation of the dataset was split into 200, 50 and 142

examples for training, validation and testing respectively. All the combinations

117

Table B.4: Batch mode results on 100 random permutations of the Abalone
dataset.

Method MSE SD Statistical Significance of Difference

Poly KRR KAAR IKAAR CKAAR
KRR 2× 104 2× 105 8×10−20 3×10−21 8×10−7

KAAR 4.82 0.33 8×10−20 9×10−8 1×10−4

IKAAR 4.88 0.45 3×10−21 9×10−8 4×10−2

CKAAR 2× 102 1× 103 8×10−7 1×10−4 4×10−2

Spline KRR KAAR IKAAR CKAAR
KRR 5.33 1.80 4×10−6 9×10−9 3×10−2

KAAR 4.87 0.32 4×10−6 ∗ 2×10−1 3×10−2

IKAAR 4.87 0.31 9×10−9 ∗ 2×10−1 3×10−2

CKAAR 4.99 0.53 3×10−2 3×10−2 3×10−2

ANOVA KRR KAAR IKAAR CKAAR
KRR 5.08 1.05 5×10−4 4×10−6 ∗ 5×10−1

KAAR 4.81 0.34 5×10−4 ∗ 9×10−1 4×10−2

IKAAR 4.79 0.35 4×10−6 ∗ 9×10−1 2×10−2

CKAAR 4.99 0.98 ∗ 5×10−1 4×10−2 2×10−2

RBF KRR KAAR IKAAR CKAAR
KRR 5.73 3.78 2×10−9 7×10−6 7×10−3

KAAR 4.72 0.33 2×10−9 4×10−7 9×10−6

IKAAR 4.86 0.56 7×10−6 4×10−7 ∗ 2×10−1

CKAAR 5.54 3.76 7×10−3 9×10−6 ∗ 2×10−1

Table B.5: Validation parameters used for experiments on the Auto-MPG
dataset.

Parameter Name Values
Polynomial degree 2, 3, . . . , 6
Spline (no parameters)
ANOVA spline order 2, 3, . . . , 7
RBF σ 2−10, 2−8, . . . , 22

ã 2−10, 2−9, . . . , 2−5

IKAAR m 1, 11, . . . , 81
CKAAR b 0, 0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99, 1

118

Table B.6: Batch mode results on 100 random permutations of the Auto-MPG
dataset.

Method MSE SD Statistical Significance of Difference

Poly KRR KAAR IKAAR CKAAR
KRR 8.87 3.13 6×10−24 ∗ 9×10−1 ∗ 1×10−1

KAAR 13.57 5.77 6×10−24 3×10−25 2×10−25

IKAAR 8.83 2.64 ∗ 9×10−1 3×10−25 ∗ 1×10−0

CKAAR 8.84 2.94 ∗ 1×10−1 2×10−25 ∗ 1×10−0

Spline KRR KAAR IKAAR CKAAR
KRR 8.14 1.85 1×10−28 ∗ 9×10−1 ∗ 7×10−2

KAAR 13.51 8.63 1×10−28 8×10−28 1×10−28

IKAAR 8.27 2.02 ∗ 9×10−1 8×10−28 ∗ 2×10−1

CKAAR 8.17 1.69 ∗ 7×10−2 1×10−28 ∗ 2×10−1

ANOVA KRR KAAR IKAAR CKAAR
KRR 8.03 1.74 1×10−27 ∗ 6×10−1 ∗ 1×10−1

KAAR 12.72 9.61 1×10−27 3×10−26 3×10−27

IKAAR 8.05 1.62 ∗ 6×10−1 3×10−26 ∗ 8×10−1

CKAAR 8.05 1.59 ∗ 1×10−1 3×10−27 ∗ 8×10−1

RBF KRR KAAR IKAAR CKAAR
KRR 8.38 2.41 7×10−25 ∗ 2×10−1 2×10−2

KAAR 13.59 8.43 7×10−25 1×10−24 4×10−25

IKAAR 8.36 2.17 ∗ 2×10−1 1×10−24 ∗ 8×10−1

CKAAR 8.37 2.34 2×10−2 4×10−25 ∗ 8×10−1

per kernel of the parameters shown in Table B.5 were used during the validation

stage. The results are in Table B.6.

B.1.4 The Auto-Price Dataset

The aim for the Auto-Price dataset is to predict the price of a car from 15

features which include characteristics like length, weight, number of doors,

engine type and insurance risk rating. Those signals in the original dataset

that had missing features and 10 nominal features were removed.

The dataset used contains 159 examples and 100 random permutations

where taken. Each permutation of the dataset was split into 100, 30 and 29

examples for training, validation and testing respectively. All the combinations

per kernel of the parameters shown in Table B.7 were used during the validation

119

Table B.7: Validation parameters used for experiments on the Auto-Price
dataset.

Parameter Name Values
Polynomial degree 2, 3, . . . , 6
Spline (no parameters)
ANOVA spline order 2, 4, 6, 8, 10, 12, 15
RBF σ 2−10, 2−8, . . . , 22

ã 2−10, 2−9, . . . , 2−5

IKAAR m 1, 11, . . . , 101
CKAAR b 0, 0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99, 1

stage. The results are in Table B.8.

B.1.5 The Relative CPU Performance Dataset

The Relative CPU Performance dataset concerns itself with the problem of

predicting the relative performance of a CPU given 6 features which include

the size of its cache memory and its cycles per second. Two nominal features

were removed.

The dataset used contains 209 examples and 100 random permutations

where taken. Each permutation of the dataset was split into 150, 34 and 25

examples for training, validation and testing respectively. All the combinations

per kernel of the parameters shown in Table B.9 were used during the validation

stage. The results are in Table B.10.

B.1.6 The Servo Dataset

For the Servo dataset the problem is to predict the rise time of a servomech-

anism in terms of 4 features: two continuous gain settings and two discrete

choices of mechanical linkages.

The dataset contains 167 examples and 100 random permutations where

taken. Each permutation of the dataset was split into 100, 40 and 27 examples

for training, validation and testing respectively. All the combinations per

kernel of the parameters shown in Table B.11 were used during the validation

120

Table B.8: Batch mode results on 100 random permutations of the Auto-Price
dataset.

Method MSE SD Statistical Significance of Difference

Poly ×106 ×106 KRR KAAR IKAAR CKAAR
KRR 7.48 8.84 2×10−19 6×10−3 2×10−4

KAAR 13.51 8.36 2×10−19 1×10−17 2×10−19

IKAAR 7.87 6.27 6×10−3 1×10−17 ∗ 9×10−1

CKAAR 8.05 9.23 2×10−4 2×10−19 ∗ 9×10−1

Spline ×106 ×106 KRR KAAR IKAAR CKAAR
KRR 11.18 18.47 1×10−17 ∗ 1×10−1 2×10−2

KAAR 21.89 12.85 1×10−17 3×10−29 2×10−20

IKAAR 10.03 8.30 ∗ 1×10−1 3×10−29 ∗ 9×10−1

CKAAR 11.66 17.96 2×10−2 2×10−20 ∗ 9×10−1

ANOVA ×106 ×106 KRR KAAR IKAAR CKAAR
KRR 8.12 13.59 9×10−16 1×10−3 3×10−2

KAAR 10.92 6.91 9×10−16 3×10−14 5×10−14

IKAAR 7.26 6.10 1×10−3 3×10−14 ∗ 3×10−1

CKAAR 8.81 13.97 3×10−2 5×10−14 ∗ 3×10−1

RBF ×106 ×106 KRR KAAR IKAAR CKAAR
KRR 7.13 4.21 6×10−11 2×10−3 ∗ 6×10−2

KAAR 9.55 5.56 6×10−11 2×10−8 6×10−8

IKAAR 7.75 5.63 2×10−3 2×10−8 ∗ 2×10−1

CKAAR 7.63 5.06 ∗ 6×10−2 6×10−8 ∗ 2×10−1

Table B.9: Validation parameters used for experiments on the Relative CPU
Performance dataset.

Parameter Name Values
Polynomial degree 2, 3, . . . , 6
Spline (no parameters)
ANOVA spline order 1, 2, . . . , 6
RBF σ 2−10, 2−8, . . . , 22

ã 2−10, 2−9, . . . , 2−5

IKAAR m 1, 11, . . . , 101
CKAAR b 0, 0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99, 1

121

Table B.10: Batch mode results on 100 random permutations of the Relative
CPU Performance dataset.

Method MSE SD Statistical Significance of Difference

Poly ×103 ×103 KRR KAAR IKAAR CKAAR
KRR 14.99 47.06 6×10−5 ∗ 3×10−1 ∗ 5×10−1

KAAR 13.60 18.58 6×10−5 2×10−7 3×10−6

IKAAR 9.10 15.98 ∗ 3×10−1 2×10−7 ∗ 9×10−1

CKAAR 15.00 46.75 ∗ 5×10−1 3×10−6 ∗ 9×10−1

Spline ×103 ×103 KRR KAAR IKAAR CKAAR
KRR 4.34 6.05 1×10−12 ∗ 3×10−1 ∗ 4×10−1

KAAR 15.05 20.08 1×10−12 6×10−14 5×10−14

IKAAR 7.70 14.00 ∗ 3×10−1 6×10−14 ∗ 4×10−1

CKAAR 6.00 11.74 ∗ 4×10−1 5×10−14 ∗ 4×10−1

ANOVA ×103 ×103 KRR KAAR IKAAR CKAAR
KRR 3.77 5.00 5×10−10 ∗ 6×10−1 ∗ 9×10−1

KAAR 11.08 15.86 5×10−10 8×10−8 1×10−10

IKAAR 6.87 12.54 ∗ 6×10−1 8×10−8 ∗ 4×10−1

CKAAR 5.47 10.05 ∗ 9×10−1 1×10−10 ∗ 4×10−1

RBF ×103 ×103 KRR KAAR IKAAR CKAAR
KRR 5.83 9.40 1×10−10 ∗ 7×10−1 ∗ 7×10−1

KAAR 9.99 13.99 1×10−10 9×10−7 3×10−11

IKAAR 7.12 12.48 ∗ 7×10−1 9×10−7 ∗ 1×10−1

CKAAR 6.57 11.15 ∗ 7×10−1 3×10−11 ∗ 1×10−1

Table B.11: Validation parameters used for experiments on the Servo dataset.

Parameter Name Values
Polynomial degree 2, 3, . . . , 6
Spline (no parameters)
ANOVA spline order 1, 2, 3, 4
RBF σ 2−10, 2−8, . . . , 22

ã 2−10, 2−9, . . . , 2−5

IKAAR m 1, 11, . . . , 101
CKAAR b 0, 0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99, 1

122

Table B.12: Batch mode results on 100 random permutations of the Servo
dataset.

Method MSE SD Statistical Significance of Difference

Poly ×10−1 ×10−1 KRR KAAR IKAAR CKAAR
KRR 5.30 3.74 8×10−15 ∗ 6×10−1 ∗ 4×10−1

KAAR 6.93 4.60 8×10−15 2×10−13 4×10−19

IKAAR 5.45 3.85 ∗ 6×10−1 2×10−13 ∗ 3×10−1

CKAAR 5.38 4.00 ∗ 4×10−1 4×10−19 ∗ 3×10−1

Spline ×10−1 ×10−1 KRR KAAR IKAAR CKAAR
KRR 4.47 3.42 1×10−18 3×10−2 ∗ 6×10−2

KAAR 6.51 4.54 1×10−18 1×10−17 1×10−20

IKAAR 4.52 3.44 3×10−2 1×10−17 3×10−2

CKAAR 4.45 3.48 ∗ 6×10−2 1×10−20 3×10−2

ANOVA ×10−1 ×10−1 KRR KAAR IKAAR CKAAR
KRR 4.43 3.49 5×10−18 ∗ 2×10−1 ∗ 7×10−1

KAAR 6.25 4.36 5×10−18 2×10−16 3×10−19

IKAAR 4.52 3.50 ∗ 2×10−1 2×10−16 ∗ 4×10−1

CKAAR 4.45 3.53 ∗ 7×10−1 3×10−19 ∗ 4×10−1

RBF ×10−1 ×10−1 KRR KAAR IKAAR CKAAR
KRR 5.07 4.10 7×10−14 ∗ 9×10−1 ∗ 1×100

KAAR 6.73 4.75 7×10−14 7×10−13 2×10−15

IKAAR 5.14 4.10 ∗ 9×10−1 7×10−13 ∗ 1×10−1

CKAAR 5.05 3.91 ∗ 1×100 2×10−15 ∗ 1×10−1

stage. The results are in Table B.12.

B.1.7 The Wisconsin Prognostic Breast Cancer Dataset

In the Wisconsin Prognostic Breast Cancer dataset the problem is to predict

the time for a patient to recur (or her disease free time). 32 features are given,

including characteristics of the cell nuclei and the tumour size. Four examples

that had missing values and 2 features were removed.

The dataset used contains 194 examples and 100 random permutations

where taken. Each permutation of the dataset was split into 100, 50 and 44

examples for training, validation and testing respectively. All the combina-

tions per kernel of the parameters shown in Table B.13 were used during the

validation stage. The results are in Table B.14.

123

Table B.13: Validation parameters used for experiments on the Wisconsin
Prognostic Breast Cancer dataset.

Parameter Name Values
Polynomial degree 2, 3, . . . , 6
Spline (no parameters)
ANOVA spline order 8, 16, 24, 32
RBF σ 2−10, 2−8, . . . , 22

ã 2−10, 2−9, . . . , 2−5

IKAAR m 1, 11, . . . , 101
CKAAR b 0, 0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99, 1

Table B.14: Batch mode results on 100 random permutations of the Wisconsin
Prognostic Breast Cancer dataset.

Method MSE SD Statistical Significance of Difference

Poly ×103 ×103 KRR KAAR IKAAR CKAAR
KRR 1.53 0.91 5×10−19 7×10−15 1×10−14

KAAR 1.15 0.18 5×10−19 2×10−4 3×10−4

IKAAR 1.19 0.23 7×10−15 2×10−4 ∗ 9×10−1

CKAAR 1.20 0.28 1×10−14 3×10−4 ∗ 9×10−1

Spline ×103 ×103 KRR KAAR IKAAR CKAAR
KRR 13.62 44.78 3×10−13 5×10−12 1×10−10

KAAR 1.14 0.19 3×10−13 1×10−2 1×10−3

IKAAR 1.17 0.22 5×10−12 1×10−2 ∗ 4×10−1

CKAAR 1.17 0.23 1×10−10 1×10−3 ∗ 4×10−1

ANOVA ×103 ×103 KRR KAAR IKAAR CKAAR
KRR 2× 105 2× 106 4×10−13 6×10−7 4×10−9

KAAR 1.15 0.19 4×10−13 2×10−4 5×10−5

IKAAR 2× 105 2× 106 6×10−7 2×10−4 ∗ 5×10−1

CKAAR 1.38 1.95 4×10−9 5×10−5 ∗ 5×10−1

RBF ×103 ×103 KRR KAAR IKAAR CKAAR
KRR 1.16 0.19 2×10−8 4×10−3 2×10−2

KAAR 1.11 0.19 2×10−8 2×10−6 2×10−7

IKAAR 1.14 0.20 4×10−3 2×10−6 ∗ 8×10−1

CKAAR 1.14 0.19 2×10−2 2×10−7 ∗ 8×10−1

124

	Introduction
	Research Objectives
	Original Contributions
	Summary of Original Contributions

	List Of Publications
	Organisation of the Dissertation

	The Aggregating Algorithm
	Preliminaries
	Algorithm
	The Square Loss Game
	Results for the Restricted Game
	Generalisation to the Full Game

	Online Regression
	Protocol and Loss
	Batch Learning

	Linear and Kernel Predictors
	Standard Kernels

	Existing Solutions
	Least Squares
	Ridge Regression
	Comparison of Least Squares and Ridge Regression

	Improving the Aggregating Algorithm for Regression
	Introduction
	The Aggregating Algorithm for Regression (AAR)
	The Kernel Aggregating Algorithm for Regression (KAAR)

	Improving the Empirical Performance of KAAR
	Simple Convex Combination (KOKO)
	Iterative KAAR (IKAAR)
	Controlled KAAR (CKAAR)

	Summary of Methods and Comparisons with Ridge Regression
	Bayesian Interpretation

	Empirical Results
	Experimentation Methodology
	Normalisation
	Statistical Significance
	The Gaze Dataset
	The Boston Housing Dataset
	Discussion

	Conclusion

	Regression with Changing Dependencies
	Introduction
	Methods
	WeCKAAR
	KAARCh

	Upper Bounds
	AARCh Loss Upper Bound
	KAARCh Loss Upper Bound
	Analysis

	Empirical Results
	Artificial Dataset
	Options Implied Volatility Data

	Conclusion

	Conclusion
	Achievements
	Improving the Aggregating Algorithm for Regression
	Regression with Changing Dependencies

	Future Work
	Final Remarks

	Lemmas
	Additional Empirical Results
	Results
	The Mexican Hat Dataset
	The Abalone Dataset
	The Auto-MPG Dataset
	The Auto-Price Dataset
	The Relative CPU Performance Dataset
	The Servo Dataset
	The Wisconsin Prognostic Breast Cancer Dataset

